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a b s t r a c t

Wepropose a simple Bayesian variable selectionmethod in binary quantile regression. Our
method computes the Bayes factors of all candidatemodels simultaneously based on a single
set of MCMC samples from a model that encompasses all candidate models. The method
deals with multicollinearity problems and variable selection under constraints.

© 2016 Published by Elsevier B.V.

1. Introduction

Since the seminal work of Koenker and Bassett (1978) quantile regression (QR) has been rapidly expanding over recent
years in various application areas such as econometrics, finance, survival analysis, social sciences, and microarray research.
See Kottas and Krnjajic (2009), Drovancli and Pettitt (2011) and Taddy and Kottas (2011) among others. QR extends
the classical mean regression to conditional quantiles of the response variable. It is more robust to non-normal error
distributions and outliers, and providesmore comprehensive information on the relationship between the response variable
and the covariates than classical mean regression.

As with any regression problem, selection of appropriate covariates is important in QR. Excluding important covariates
may yield biased estimators whereas including spurious covariates may lead to loss in estimation efficiency. Bayesian
approaches for variable selection in QR have received considerable attention in recent literature because Bayesian methods
are often more competitive for small or moderate data sets with a low signal-to-noise ratio (Antoniadis et al., 2009). Li et al.
(2010) studied regularization, e.g. lasso, in quantile regression from a Bayesian perspective. Alhamzawi and Yu (2012), Ji
et al. (2012), and Yu et al. (2013) extended stochastic search variable selection (SSVS, George and McCulloh, 1993) methods
in mean regression to quantile regression by introducing latent variables into QR. Oh et al. (2016) proposed an alternative
Bayesian variable selection method in QR using the Savage–Dickey density ratio.

Binary quantile regression is first introduced by Manski (1985). Kordas (2006) has shown that QR leads to much more
comprehensive view on how the predictor variables influence the response even in binary case. Especially, Kordas (2006)
showed that binary quantile regression can be very useful for unbalanced data in which there are excessive zeros/ones in
data. However,most studies in binary quantile regression focused onmedian binary regression. To the best of our knowledge,
the only exception is Ji et al. (2012) who extended a SSVS in mean regression to binary quantile regression.
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In this paper we extend the method of Oh et al. (2016) to deal with binary response variables in QR. The rest of paper is
organized as follows. Section 2 presents the posterior inference on parameters in binary quantile regression using the Gibbs
sampling algorithm. Section 3 describes simultaneous estimation of Bayes factors of all candidate models. The proposed
method is illustrated with both simulated and real data sets in Section 4. We end with concluding remarks in Section 5.

2. Posterior inference

Let yi denote the response variable and xi the q×1 vector of covariates for the ith observation. Following Benoit and Poel
(2012), binary QR with quantile p, 0 < p < 1, is given as

y∗

i = x′

iβp + εi, yi = I(y∗

i > 0), i = 1, . . . , n,

where εi is an error term of which the pth quantile is equal to zero, βp is an unknown vector of coefficients that depends
on p, and I is the indicator function. In this model, binary QR is considered as a linear QR with a continuous latent response
variable which is not fully observed.

The QR coefficient βp can be estimated by minimizing

n
i=1

ρp(yi − I(x′

iβp > 0)), (1)

where ρp is the check loss function, given by ρp(u) = u(p − I(u < 0)). If y∗

i is given, the function ρp(yi − I(x′

iβp > 0)) in
(1) can be replaced by ρp(y∗

i − x′

iβp) and the binary QR with binary observations y = (y1, .., yn) is replaced by the linear QR
with continuous observations y∗

= (y∗

1, .., y
∗
n). From here on we suppress p on βp to simplify notation.

For Bayesian inference, we need a likelihood function. Since minimizing (1) is equivalent to maximizing a likelihood
function under an asymmetric Laplace (AL) error distribution (Koenker and Machado, 1999), we assume AL distribution for
εi. Also, a location-scalemixture representation of the asymmetric Laplace distribution allows convenient Bayesian inference
using the Gibbs sampling algorithm of Gelfand and Smith (1990). See Yu and Moyeed (2001), Yu and Stander (2007), Reed
and Yu (2009), Kozumi and Kobayashi (2011) and Yu et al. (2013) among others.

We use the mixture representation given in Yu et al. (2013). Let wi follow an exponential distribution with rate p(1− p)
and assume that, given wi, εi follows N((1 − 2p)wi, 2wi). Then the marginal distribution of εi is the AL distribution. Thus,
introducing latent variables y∗ andw = (w1, . . . , wn)

′ into themodel enables convenient posterior sample generation using
the Gibbs sampler. The likelihood function of (β,w, y∗) is proportional to

n
i=1

w
−1/2
i exp

−
1
4

n
i=1

(y∗i −x′iβ−(1−2p)wi)
2

wi
−

n
i=1

p(1−p)wi
·[I(y∗

i > 0, yi = 1) + I(y∗

i ≤ 0, yi = 0)].

WithN(β0, Σ0) prior forβ, the conditional posterior distribution ofβ is given byN(µβ , Σβ), whereΣβ = (X′
wXw+Σ−1

0 )−1,

µβ = Σβ(X′
wy

∗
w + Σ−1

0 β0),Xw =


x1√
2w1

, . . . , xn√
2wn

′

, yw =


y∗1−(1−2p)w1

√
2w1

, . . . ,
y∗n−(1−2p)wn

√
2wn

′

. The conditional posterior

distribution of w−1
i is given by IG


1

|y∗i −x′
iβ|

, 1
2


, where IG denotes the inverse Gaussian distribution. Finally, the conditional

posterior distribution of y∗

i is given by N(xiβ + (1 − 2p)wi, 2wi) · [I(y∗

i > 0, yi = 1) + I(y∗

i ≤ 0, yi = 0)].

3. Bayes factor

Let {MJ} be a set of candidate models whereMJ is a binary QRmodel in which only a subset βJ of β is non-zero. LetMF be
a model which encompasses all the candidate models, i.e., any candidate model MJ is a special case of MF . For a prior of βJ
under MJ , we assume an encompassing prior, i.e., πJ(βJ) = πF (βJ |β

c
J = 0), where πJ(βJ) is the prior density of βJ under MJ

and πF (βJ |β
c
J = 0) is the conditional prior density of βJ given βc

J = 0 underMF , and βc
J is a complementary set of βJ . Under

the above prior assumption, the Bayes factor (BF) ofMJ againstMF is given as

BF J =
P(MJ |y)/P(MJ)

P(MF |y)/P(MF )
=

πF (β
c
J = 0|y)

πF (β
c
J = 0)

, (2)

where P(MJ |y) and P(MJ) are the posterior and the prior probability of MJ , respectively, and πF (βJ = 0|y) and πF (βJ = 0)
are the marginal posterior and prior density of βJ , respectively, at zero under the encompassing model. Eq. (2) is called
the Savage–Dickey density ratio (Dickey and Lientz, 1970; Dickey, 1971, 1976). A generalized version of the Savage–Dickey
density ratio is given by Verdinelli andWasserman (1995) which can be used when non-encompassing prior is used. Marin
andRobert (2010) raised some fundamental issues on the Savage–Dickeydensity ratio andproposed an alternative approach.

Under a normal prior for β, the marginal prior density of βc
J is given in a closed form. The marginal posterior density

function of βc
J is not given in a closed form, but the conditional distribution of βc

J is given as a multivariate normal density.
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