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a b s t r a c t

This paper makes an observation about the “amount of structure” that different classical and relativistic
spacetimes posit. The observation substantiates a suggestion made by Earman (1989) and yields a
cautionary remark concerning the scope and applicability of structural parsimony principles.
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1. Introduction

There is a story that is often told about the progression of
classical spacetime theories.1 We began long ago with Aristotelian
spacetime. Aristotelian spacetime singles out a preferred worldline
as the center of the universe. Then we moved to Newtonian
spacetime and did away with this structure. Newtonian spacetime
does not single out a preferred worldline, but it does single out a
preferred inertial frame as the rest frame. Finally, we moved to
Galilean spacetime and again did away with structure. Galilean
spacetime does not even single out a preferred inertial frame.

This story provides a sense in which each of these classical
spacetimes has “less structure” than its predecessors. It is natural
to ask whether this progression towards less structure continues
in the transition between classical and relativistic spacetimes. The
purpose of this paper is to answer this question by investigating
the structural relationships that hold between Galilean, New-
tonian, and Minkowski spacetime. There is a precise sense in
which Newtonian spacetime has more structure than both Gali-
lean spacetime and Minkowski spacetime. But in this same sense,
Galilean and Minkowski spacetime have incomparable amounts of
structure; neither spacetime has less structure than the other. The

progression towards a less structured spacetime therefore does
not continue into the relativistic setting.

This discussion of spacetime structure will yield two modest
philosophical payoffs. First, it will substantiate a remark made by
Earman (1989). Earman has suggested, somewhat paradoxically,
that Newtonian spacetime is a more natural stepping-stone to
relativistic spacetimes than Galilean spacetime is. This discussion
will provide one way of making Earman's suggestion perfectly
precise. Second, this discussion will also yield a cautionary remark
concerning the scope and applicability of the following methodo-
logical principle:

Structural parsimony: All other things equal, we should prefer
theories that posit less structure.

This paper will provide an example of two physical theories that
posit incomparable amounts of structure. In such cases, a struc-
tural parsimony principle is not applicable.

2. Structure preliminaries

We begin by explicating the idea of the “amount of structure”
that a mathematical object has. We would like a clear and
principled way to say when some mathematical object X has more
or less structure than another mathematical object Y. One parti-
cularly natural way to compare amounts of structure appeals to
the automorphisms, or symmetries, of a mathematical object.
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An automorphism of a mathematical object X is an invertible
function from X to itself that preserves all of the structure of X. The
automorphisms of an object bear a close relationship to the
structure of the object. This relationship suggests the following
kind of criterion for comparing amounts of structure:

SYM: A mathematical object X has more structure than a
mathematical object Y if the automorphism group
AutðXÞ is “smaller than” the automorphism group AutðYÞ.

The basic idea behind SYM is clear. If a mathematical object has
more automorphisms, then it intuitively has less structure that
these automorphisms are required to preserve. Conversely, if a
mathematical object has fewer automorphisms, then it must be
that the object has more structure that the automorphisms are
required to preserve. The amount of structure that a mathematical
object has is, in some sense, inversely proportional to the size of
the object's automorphism group.2

The criterion SYM is intuitive, but it is imprecise. One way to
make SYM precise is as follows:

SYMn: A mathematical object X has more structure than a
mathematical object Y if AutðXÞ⊊AutðYÞ.

The condition AutðXÞ⊊AutðYÞ is one way to make precise the idea
that AutðXÞ is “smaller than” AutðYÞ. SYMn makes intuitive verdicts
in many simple cases of structural comparison. For example, one
can verify that in general SYMn makes the following verdicts:

� A set X has less structure than a group ðX; �Þ.
� A set X has less structure than a topological space ðX; τÞ.
� A vector space V has less structure than an inner product space

ðV ; gÞ.

The criterion SYMn is one particularly natural way to explicate
the idea that an object X has “more structure” than another object
Y. In what follows, we will use SYMn to compare the structure of
Galilean, Newtonian, and Minkowski spacetime.3 Earman has
implicitly used SYMn to compare the structure of various classical
spacetimes (Earman, 1989, Ch. 2). And indeed, SYMn makes
the intuitive verdicts in all of these cases. Galilean spacetime
has less structure than Newtonian spacetime, which in turn
has less structure than Aristotelian spacetime. This paper
simply extends Earman's discussion into the relativistic
setting.

3. Spacetime preliminaries

Before applying SYMn to these spacetimes we need some
preliminaries.4 We first present the standard mathematical
descriptions of Galilean, Newtonian, and Minkowski spacetime,
and then discuss their automorphisms.

3.1. Spacetimes

Spacetime theories begin by specifying a smooth, connected,
four-dimensional manifold M. Each point pAM represents the
location of an “event” in spacetime. Galilean, Newtonian, and
Minkowski spacetime all have the underlying manifold M ¼R4.
They then endow R4 with different geometric structures.

Galilean spacetime is the tuple ðR4; tab;h
ab;∇Þ. The smooth

tensor fields tab and hab and the derivative operator ∇ are defined
as follows:

tab ¼ ðdax1Þðdbx1Þ

hab ¼ ∂
∂x2

� �a ∂
∂x2

� �b

þ ∂
∂x3

� �a ∂
∂x3

� �b

þ ∂
∂x4

� �a ∂
∂x4

� �b

∇ is the coordinate derivative operator on R4;

where daxi is the differential of the standard coordinate function

xi : R4-R and ∂=∂xi
� �a

is the standard ith coordinate vector field

on R4. The coordinate derivative operator ∇ on R4 is defined to be

the unique derivative operator that satisfies ∇a ∂=∂xi
� �b ¼ 0 for

each i¼ 1;…;4.5 Importantly, we note that ∇ is flat, in the sense
that its curvature field Ra

bcd ¼ 0 everywhere on R4.
One interprets these geometric structures on Galilean space-

time as follows (Malament, 2012, Ch. 4.1). The field tab is a
“temporal metric”. It assigns a temporal length to vectors, and
defines a preferred partitioning of Galilean spacetime into “simul-
taneity slices”. The field hab is a “spatial metric”. Given a vector ξa,
one can use hab to (indirectly) assign a spatial length to it. Finally,
the derivative operator ∇ endows R4 with a “standard of con-
stancy”. It specifies which trajectories through Galilean spacetime
are geodesics.

Newtonian spacetime is obtained by adding a preferred notion
of “rest” to Galilean spacetime. Specifically, it is the tuple
ðR4; tab;h

ab;∇; λaÞ, where tab, hab and ∇ are defined exactly as in
Galilean spacetime, and

λa ¼ ∂
∂x1

� �a

:

The structures tab, hab, and ∇ are interpreted as above. The field λa

singles out a preferred rest frame. It allows one to classify
trajectories through Newtonian spacetime as “at rest” or “not at
rest”. A geodesic γ : I-R4 with tangent field ξa is at rest if ξa ¼ cλa

for some constant cAR.
It only remains to define Minkowski spacetime. Minkowski

spacetime is the pair ðR4;ηabÞ, with the Minkowski metric ηab
defined by

ηab ¼ ðdax1Þðdbx1Þ�ðdax2Þðdbx2Þ�ðdax3Þðdbx3Þ�ðdax4Þðdbx4Þ:6

The metric ηab endows Minkowski spacetime with “lightcone
structure”. It allows one to classify a vector ξa at pAR4 as timelike

(if ηabξ
aξb40) or lightlike (if ηabξ

aξb ¼ 0) or spacelike (if

ηabξ
aξbo0). Timelike vectors at a point pAR4 lie on the interior

of the lightcone, lightlike vectors lie on the boundary of the
lightcone, and spacelike vectors lie outside the lightcone.

2 A criterion like SYM is used by North (2009) to compare the structure of
Hamiltonian and Lagrangian mechanics and by Earman (1989) to compare various
classical spacetime theories. See Halvorson (2011), Swanson & Halvorson (2012),
Curiel (2014), and Barrett (2015) for related discussions of structure and classical
mechanics.

3 SYMn has some shortcomings. In particular, it is overly sensitive to the set
that underlies a mathematical object. There is a sense in which a topological space
ðX; τÞ has more structure than a set Y even when the sets X and Y are distinct. It is
not the case, however, that AutðX; τÞ � AutðYÞ (since functions from X to itself are
different from functions from Y to itself), so SYMn is incapable of capturing this
sense. But this will not be problematic for our purposes; all of the spacetimes that
we consider have the same underlying set R4.

4 The reader is encouraged to consult Malament (2012) or Wald (1984) for
details.

5 For proof that the coordinate derivative operator is unique see Malament
(2012, Prop. 1.7.11). One can easily verify that Galilean spacetime, so defined, is a
classical spacetime in the sense of Malament (2012, p. 249).

6 Note that ∇aηbc ¼ 0, where ∇ is the derivative operator defined above. So the
coordinate derivative operator ∇ on R4 is the unique derivative operator compa-
tible with the Minkowski metric.
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