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Studies on protein unfolding rates are limited and challengingdue to the complexity of unfoldingmechanismand
the larger dynamic range of the experimental data. Though attempts have been made to predict unfolding rates
using protein sequence-structure information there is no available method for predicting the unfolding rates of
proteins upon specific pointmutations. In thiswork, we have systematically analyzed a set of 790 single mutants
and developed a robust method for predicting protein unfolding rates upon mutations (Δlnku) in two-state pro-
teins by combining amino acid properties and knowledge-based classification ofmutantswithmultiple linear re-
gression technique.We obtain amean absolute error (MAE) of 0.79/s and a Pearson correlation coefficient (PCC)
of 0.71 between predicted unfolding rates and experimental observations using jack-knife test. We have devel-
oped a web server for predicting protein unfolding rates upon mutation and it is freely available at https://
www.iitm.ac.in/bioinfo/proteinunfolding/unfoldingrace.html. Prominent features that determine unfolding ki-
netics as well as plausible reasons for the observed outliers are also discussed.
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1. Introduction

Oneof the challenges in thefield of protein folding is to identify basic
protein features that determine the rates of folding aswell as unfolding,
and hence the conformational stability. Several experimental studies
have been carried out to measure the folding rates of proteins [1]. Con-
sequently, several structural parameters such as contact order (CO),
long-range order (LRO), total contact distance, cliquishness, and multi-
ple contact index have beenproposed to understand andpredict protein
folding rates from three-dimensional structures of proteins [2–7].
Further, sequence based methods have also been developed for
predicting the folding rates of two and three-state proteins [8–10].

On the other hand, the available experimental data on unfolding
rate constants and the mechanisms underlying protein unfolding
rates show different behaviors to those of folding rates [11]. Impor-
tantly, while the folding rates of proteins vary by just over 5 orders
of magnitude [12] the unfolding rates exhibit a much larger dynamic
range and span ~8–10 orders of magnitude for single domain pro-
teins. The available experimental data on protein unfolding rates
have been related with various structure based parameters. For ex-
ample, Jung et al. [13] associated them with topological parameters
such as contact order, clustering coefficient and average path length.
They have also utilized a network of contacts in native protein struc-
tures using graph theory for relating protein unfolding rates [14].

Protein unfolding rates (lnku) have also been studied with LRO
[15], free energy surface model combining the inter-atomic contacts
with protein stability [16] and a physical one-dimensional free ener-
gy surface model [17]. In addition to the structure-based methods,
sequence based models have been proposed by using physicochem-
ical, conformational and energetic properties of amino acid residues
for predicting protein unfolding rates [18].

Point mutations in a protein alter its structure, folding, stability
and function. The factors influencing the stability of proteins upon
mutations have been well documented and several methods have
been proposed for predicting the stability of proteins upon amino
acid substitutions using protein three-dimensional structural infor-
mation and/or just from amino acid sequence [8]. The effects of
point mutations on various diseases, specifically on cancer have
been studied in detail [19,20]. In our earlier works, we have devel-
oped a method for predicting the folding rates of two-state proteins
upon point mutations, which showed a good performance when
compared against the experimental data [10]. However, there is
no method available for predicting protein unfolding rates upon
mutations.

In this work, we have developed a novel method for the prediction of
changes in unfolding rates upon pointmutation using amino acid proper-
ties, secondary structural information and the precise location of themu-
tation. Our method showed a correlation and MAE of 0.71 and 0.79/s,
respectively with experimental data on leave-one-out cross-validation.
We have developed a web server for the same and it is freely available
at https://www.iitm.ac.in/bioinfo/proteinunfolding/unfoldingrace.html.
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2. Materials and methods

2.1. Dataset

We have constructed a set of 790 mutants from 26 two-state-like
proteins, which contain 14 to 68 mutants in each protein using the
data available in the literature [21]. Due to the unavailability of exten-
sive mutational data for three-state and large proteins we considered
only two-state small proteins in this work. The unfolding rates of pro-
teins span more than eight orders of magnitude and it is difficult to
treat the difference of unfolding rates upon point mutations. Moreover,
the difference in logarithm of unfolding rates for the wild type and mu-
tation is proportional to the difference in the unfolding activation free
energy that is widely used in the literature. Hence, we used Δlnku as
change in protein unfolding rates upon mutation. The Δ lnku values
are in the range between −3.46/s and 8.05/s. Further, we used a test
set of 20non-redundantmutants,whichhave theΔ lnku values between
−0.27/s and 4.20/s. Interestingly, the Δ lnku values have a wider range
and twice the standard deviation compared to the Δ lnkf for the same
point mutations [10]. The complete dataset of 790 mutants along with
mutation details and unfolding rates are available at https://www.
iitm.ac.in/bioinfo/proteinunfolding/unfoldingrace.html.

2.2. Amino acid properties

We start with a comprehensive set of 242 diverse amino acid fea-
tures obtained from Amino Acid Index Database [22] and literature
[23] that includes physicochemical, conformational, thermodynamic
and evolutionary properties, which are relevant for the present study.
We then utilized an ensemble of attribute selection methods available
in WEKA [24] for reducing the features as explained earlier [10] and
Supplementary Table S1 shows the reduced list of features.

2.3. Computational procedures

We have followed the procedure described in Chaudhary et al. [10]
for developing the method for predicting the changes in unfolding
rates of two-state proteins upon point mutations.

The change in unfolding rate upon point mutations Δ ln ku, is calcu-
lated as:

Δln ku ¼ lnkmut
u − lnkWT

u ð1Þ

where ln ku
mut and ln ku

WT are natural logarithms of folding rates for mu-
tant and wild-type amino acid residues, respectively.

We observe that none of the shortlisted features exhibited a PCC of
more than±0.47withΔ ln ku for the entire set of 790mutants taken to-
gether. Therefore, we classified the mutants based on secondary struc-
ture, SS (helix, strand, coil), normalized accessible surface area, ASA
(buried, ASA ≤ 12%, partially buried, 12 b ASA ≤ 36% and exposed,
ASA N 36%) and sequence position (N-terminal, ≤33%, Middle, 33–67%
and C-terminal, ≥67%) of the wild-type residues so that each class con-
tains uniform distribution of data andminimum redundancy. The single
state classification has nine classes (3 classes each), double and triple
state classifications have 27 classes. The grouping of 27 classes using
the combinations of SS, ASA and sequence position are presented in
Table 1. ASA and secondary structure of mutants were assigned using
DSSP [25].

For each class, we utilized multiple linear regression technique to
identify the best combination of three features to relate protein
unfolding rates, Δ lnku [26]. We have set up a total of 27 models for
each class and the regression equations are shown in Supplementary
Table S2. These models are subjected to leave-one-out cross-validation
(jack-knife test) with n iterations, where n is the total number of data
(trained with n-1 data and tested the omitted one) to evaluate the

performance of the method. The same model is also used on a blind
test set for validating the method.

With this approach, however, wewere unable to predict the effect of
the same mutation type (say, V → A) at different positions, suggesting
the importance of neighboring residues close to the mutated site.
Hence, we included the information about neighboring residues,
which varies with location for each mutation depending on the nearby
residues. The contribution of neighboring residues (ΔPseq) has been ob-
tained using average property value for window lengths of 3 to 19 res-
idues. It is computed using the equation [10]:

ΔP seq ¼ Pmut ið Þ−
X j¼iþk

j¼i−k
Pj ið Þ= 2kþ 1ð Þ

� �h i
ð2Þ

where, k varies from 0 to 9 residues on both directions; zero represents
only themutations andwithout neighboring residue information, 1 uses
a window of 3 residues and so on.

2.4. Evaluation and validation of the method

Two measures viz. PCC and MAE (mean of absolute difference be-
tween experimental and predicted values of the logarithmic change in
folding rates) were employed to evaluate the performance of the pres-
entmethod for each class.We have also examined the quality of predic-
tion using p-values.

The performance of the method was validated with three methods:

(i) Jack-knife/Leave-One-Out cross validation: Each mutant from the
dataset is left out and the prediction is performed by training n-
1 dataset for the omitted mutant. Likewise, the procedure is iter-
ated for the entire dataset to obtain the mean measure.

(ii) n-fold cross validation: ‘n’ percentage of entire data is eliminated
from the training set and is used as a validation set for testing the
model, constituted by the rest of the database. 5, 10, 20, 30 and

Table 1
Correlation coefficient andmean absolute error in 27 classes of mutants based on second-
ary structure, solvent accessibility and sequence position.

S.
No

SS ASA Position No. of
mutants

Window Performance p-value

r MAE
(s−1)

1 Strand 0–12% 0–33% 45 3 0.64 0.96 6.64E−05
2 Strand 0–12% 33–67% 30 3 0.65 0.93 2.39E−03
3 Strand 0–12% N67% 52 5 0.6 1.12 9.47E−05
4 Strand 12–36% 0–33% 30 9 0.75 0.63 7.09E−05
5 Strand 12–36% 33–67% 21 None 0.86 0.66 2.59E−05
6 Strand 12–36% N67% 24 None 0.75 0.48 6.82E−04
7 Strand N36% 0–33% 16 15 0.94 0.1 4.41E−06
8 Strand N36% 33–67% 14 None 0.98 0.14 1.29E−07
9 Strand N36% N67% 13 None 0.99 0.12 3.37E−07
10 Helix 0–12% 0–33% 36 3 0.73 0.98 1.42E−05
11 Helix 0–12% 33–67% 42 9 0.73 1.02 2.40E−06
12 Helix 0–12% N67% 29 None 0.72 1.1 3.92E−04
13 Helix 12–36% 0–33% 22 9 0.8 0.94 2.57E−04
14 Helix 12–36% 33–67% 43 3 0.74 1.03 8.37E−07
15 Helix 12–36% N67% 23 None 0.85 0.78 1.37E−05
16 Helix N36% 0–33% 37 9 0.73 0.56 1.16E−05
17 Helix N36% 33–67% 40 15 0.69 0.85 2.79E−05
18 Helix N36% N67% 32 5 0.77 0.73 1.40E−05
19 Others 0–12% 0–33% 19 5 0.85 0.57 1.75E−04
20 Others 0–12% 33–67% 37 19 0.72 0.85 1.84E−05
21 Others 0–12% N67% 13 7 0.99 0.26 1.45E−07
22 Others 12–36% 0–33% 24 None 0.86 0.57 6.18E−06
23 Others 12–36% 33–67% 22 5 0.84 0.55 5.79E−05
24 Others 12–36% N67% 20 7 0.87 0.66 3.84E−05
25 Others N36% 0–33% 42 7 0.64 0.58 1.56E−04
26 Others N36% 33–67% 42 7 0.67 0.53 4.10E−05
27 Others N36% N67% 22 15 0.89 0.54 1.81E−06
Mean 0.79 0.67

SS: secondary structure, ASA: normalized accessible surface area.
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