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A B S T R A C T

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now
often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas
sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas
optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accu-
rately predicting gas concentrations from absorption spectra remains a challenging problem due to the
presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spec-
tral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The
GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule
antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model
parameters are estimated using least squares and gradient descent optimization algorithms. The perfor-
mance of GFLM is compared with other traditional prediction models, such as partial least squares, support
vector machines, multilayer perceptron neural networks and radial basis function networks, for two real
flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The
experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is
competitive with alternative approaches, while having the added advantage of providing an interpretable
model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In order to demonstrate compliance with regularity requirements
on thermal power plant emissions, monitoring the concentrations of
pollutants such as nitrogen oxides, sulfur oxides and oxycarbides in
flue gas emissions is now mandatory in many countries [1,2]. Gas
sensing methods are diverse due to the chemical and physical effects
that can reflect gas characteristics [3]. One common sensing princi-
ple is the electrochemical variations that occur between target gases
and different sensor materials, such as metal oxide semiconductors,
polymers, and carbon nanotubes [4,5]. In recent decades, optical
spectroscopy based methods have become increasingly popular for
gas sensing [6–10], due to their high sensitivity, selectivity and sta-
bility. These methods measure the chemical composition dependent
absorption of light that occurs at different wavelengths when light
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passes through the flue gas [11]. By analyzing the measured absorp-
tion spectra, the concentration of specific components of the gas can
be predicted by regression models [12].

Many regression methods for spectral data have been reported
[13]. As a well-known multivariate regression algorithm, the classi-
cal partial least squares (PLS) can only establish linear relationships
between absorption spectra and component concentrations [14–16].
In experiments, however, there are many conditions that can lead
to nonlinearity such as instrument variation and analyte characteris-
tics [17]. Nonlinear modeling methods such as multilayer perceptron
(MLP) neural networks [18], radial basis function (RBF) networks [19],
and support vector machines (SVM) [20,21] can be used to learn
the nonlinear relationships. However, these methods typically
require substantial computational effort to train, and by virtue of
their black-box structure, cannot provide understandable heuristic
knowledge [22].

Linguistic models are built up by fuzzy rules that express human-
readable descriptions in a format suitable for regression analysis
[23,24]. A fuzzy rule is a logical linguistic “If-Then” statement [25],
where the “If” expression is referred to as the antecedent and the
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Fig. 1. Optical gas sensing system.

“Then” expression as the consequent. The antecedent expresses
input conditions in terms of fuzzy linguistic labels. Two forms of con-
sequent are normally employed in fuzzy models; the first expresses
the output directly as linguistic labels and is referred to as the Mam-
dani fuzzy rule [26], while the second defines the output as a linear
function of the inputs and is called the Takagi–Sugeno formulation.
The latter is preferred for modeling applications because it produces
a crisp output without defuzzification, and yields reduced complex-
ity regression models [27,28]. In our previous work, we discussed
a technology with a series of Takagi–Sugeno fuzzy rules for quan-
titative analysis [29]. Considering the nonlinearity of spectral data,
we proposed a quadratic polynomial equation as the rule conse-
quent [30]. Nevertheless, the predefined form of the rule consequent
employed may limit the approach’s power to handle variation in
nonlinear complexity for different chemical concentration estima-
tion tasks.

In this article, a generalized fuzzy linguistic model (GFLM) suited
to the optical gas sensing system modeling problem is presented.
The model consists of a sequence of “If-Then” fuzzy rules. In the
rule antecedent, the input variables are absorption spectra. The rule
consequent is a general nonlinear polynomial function expressed
as a function of the absorption spectra. Least squares and gradient
descent are both adopted to optimize the model. To demonstrate the
performance of GFLM, it is compared with PLS, SVM, MLP and RBF
models for flue gas spectral datasets from coal-fired and gas-fired
power plants.

The reminder of the paper is organized as follows. The optical gas
sensing system and GFLM are described in Section 2. In Section 3, the
experimental setup (datasets and procedure) is described in detail,
while Section 4 presents and discusses the experimental results.
Finally, Section 5 concludes the paper.

2. Gas sensing system with a generalized fuzzy linguistic model

2.1. Optical gas sensing system

The schematic diagram of an optical gas sensing system is shown
in Fig. 1. Flue gas is drawn into an explosion-proof tubular heater
and heated to a predefined temperature. It is then transferred to
an absorption cell where lights from a known light source is shone
through the gas onto miniature spectrometers which measure the
absorption spectrum.

2.2. Generalized fuzzy linguistic model (GFLM)

GFLM is functionally equivalent to a series of logical “If-Then”
fuzzy rules. The antecedent “If” presents the conditions, using fuzzy
linguistic labels instead of crisp numbers. The consequent “Then” is

a general nonlinear polynomial function expressed in terms of the
input variables. The “If-Then” fuzzy rules thus assume the form:

If u1 is A1 and u2 is A2 and · · · and un is An

Then fi =
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where {u1, u2, . . . un} is the input vector, {A1, A2, . . . An} are the lin-
guistic labels, {k1

j1 , k2
j1j2 , . . . , km

j1j2 · · · jm
, b} is the vector of consequent

parameters, and m is the highest degree considered. When m = 1,
this fuzzy rule reduces to the classical Takagi–Sugeno type rule. A
given GFLM consists of a series of these rules, each one having the
same highest polynomial degree, m.

To initialize the model, a clustering technique is first used to
determine the initial locations of the linguistic labels. The number of
clusters R can be predefined by users or automatically determined as
part of the clustering process.

Gaussian functions are employed to generate the membership
degree of each linguistic fuzzy set. The firing strength of the i-th rule
is then calculated as:
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where
∏

performs fuzzy AND, and {ci,j,s i,j} is the antecedent
parameter set. The Gaussian function varies when these parame-
ters change, thus exhibiting various firing strengths. The output is
computed as:

y =
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i=1 yifi∑R
i=1 yi

=
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where fi is the output of i-th rule.
Thus, we have constructed the generalized fuzzy linguistic model.

Next, a learning procedure needs to be developed. For simplicity, we
assume that the parameters can be decomposed into a nonlinear set
SN = {ci,j,s i,j} and linear set SL = {k1

j1 , k2
j1j2 , . . . , km

j1 j2 · · · jm , b}. Now given
values of the elements of SN, we can determine estimates for SL by
solving:

XSL = Y (3)

where X is a regressor matrix whose elements are a function of SN and
the model inputs, i.e. X = [xkj] = gj(SN, u1(k), u2(k), · · · , un(k)). The
linear least squares solutions to Eq. (3), which minimizes ‖XSL − Y ‖2,
is given by:

ŜL =
(

XT X
)−1

XT Y (4)

While Eq. (4) is concise in notation, XTX can often be ill-
conditioned or singular leading to numerical issues if computed
directly; singular value decomposition (SVD) provides a stable
approach to address this [31]. However, determining the solution in
this manner is computationally expensive which can be an issue if X
is large. Alternatively, SL can be computed using the recursive least
squares estimator [32,33], defined as:

⎧⎨
⎩
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(
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(5)
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