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Autoencoders (AEs) are an effective means for nonlinear feature extraction and dimension reduction. Variant
autoencoders are an improvement over traditional AEs in terms of robustness. This paper proposes a novel non-
linear and robust process-monitoring approach based on variant autoencoders (variant AEs), which include
denoising autoencoders (DAE) and contractive autoencoders (CAE). The CAE andDAE are powerful for extracting
robust and nonlinear feature representations or manifold structures underlying data from industrial processes.
Next, an online monitoring model is built through constructing new test statistic H2 based on the robust feature
representations. The control limits are determined by kernel density estimation. The proposed method was ap-
plied to the Tennessee Eastman process (TE process) to evaluate its monitoring performance, and it demonstrat-
ed outstanding process-monitoring performance through the experimental results, especially for the barely
detectable faults, such as 3, 5, 9, 10, 11, 15, 19, 20 and 21. Variant AEs monitoring provides a simple and very ef-
fective process-monitoring method for industrial processes.
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1. Introduction

With the rapid development of modern industry, industrial process-
es have experienced an increase in the scale and complexity. The re-
quirement for the reliability and security of industrial processes is
growing significantly. Online process monitoring and fault diagnosis
are key factors that ensure product quality and operational safety.
Process-monitoring approaches are roughly classified into two catego-
ries, that is, model-driven approaches and data-driven approaches.
Model-driven approaches require an accurate mathematical model of
the system or plant [1]. Because it is often difficult to obtain such an ac-
curate mathematical model for complex industrial processes, data-
based approaches, which are based on historic process data [2], rather
than model-based approaches have been widely used for process
monitoring.

Data-based process monitoring is typically accomplished by com-
paring the actual behavior of the process with a model representing
normal or desirable process behavior. The detection of process faults is
based onmonitoring of the deviation between the actual process behav-
ior and that predicted by themodel, with a fault condition flaggedwhen
these deviations exceed certain predetermined limits [24]. The data-
driven process monitoring is usually accomplished using conventional
multivariate statistical methods, typically unsupervised learning, such

as PCA (principal component analysis), PLS (partial least squares), ICA
(independent component analysis), FDA (Fisher discriminant analysis),
ForeCA (Forecastable Component Analysis), etc. [3–7,24–26].

The core issue of these data-based process monitoring schemes is
to extract robust feature representations or manifold structure from
industrial process data based on which a statistic is constructed in
principal component subspace or established in residual subspace.
PCA is the most widely used process monitoring method; it extracts
a few principal component variables from a number of highly rele-
vant process variables. Through a linear space transformation,
most of the characteristics of the original variables are reserved
and the correlation between variables is removed. PLS [4] is fairly
similar to PCA. It also requires that original data satisfy a Gaussian
distribution. Compared with PCA, the principal components in ICA
[5] are statistically independent and contain higher-order statistical
information between variables. FDA [6] determines a series of linear
transform directions bymaximizing discrete degree between classes
and minimizing discrete degree within class. However, it is difficult
to find an appropriate linear transform direction in which a maxi-
mum classification is available when the relationship between pro-
cess variables is nonlinear. ForeCA is a feature-extraction method
for multivariate time series [7]. Unfortunately, these linear monitor-
ing methods often result in high rates of false positives in process
monitoring because of the nonlinearity in real industrial processes.

Nonlinear methods have been proposed to address the problem of
nonlinearity in process monitoring. Nonlinear principal component
analysis (NLPCA) is commonly considered as a nonlinear generalization
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of standard PCA. Gnanadesikan [8] proposed a general PCA method in
which the original vector is extended to a new vector by a nonlinear
mapping, after which linear principal component analysis is applied to
the new vector. Kramer [9] proposed an autoassociative neural network
with five layers. However, it is very difficult to determine an effective
middle layer or the number of neurons of the inverse mapping layer.
Hastie and Stuetzle [10] proposed a principal curve method, in which
a smooth curve is produced by the nonlinear feature extracted from
the sample data. In recent years, the kernel methods have seen increas-
ing application to industrial processes to address this issue of nonlinear-
ity. Schölkopf [11] proposed kernel principal component analysis
(Kernel PCA), based on which Lee [12] proposed a nonlinear
performance-monitoring method. Its main idea is that the data from
low-dimensional input space is mapped to high-dimensional feature
space via nonlinear kernel function, and then the principal component
analysis is applied in the high-dimensional feature space. Zhang et al.
[14] proposed a monitoring method based on kernel FDA. Widodo ap-
plied KICA to fault diagnosis of induction motors [20]. Nonetheless,
kernel-based algorithms require considerable time to build the kernel
matrix and train themonitoringmodel. Thesemethodsmainly consider
the nonlinearity in process monitoring and lack robustness.

Currently, robustness and nonlinearity are the two key issues in pro-
cess monitoring because of the complexity of industrial processes. To
address the problems mentioned above, this paper proposed novel
process-monitoring approaches based on variant autoencoders.
Autoencoders (AE) are artificial neural networks used for representing
(encoding) a set of data, typically for the purpose of dimensionality re-
duction. AE is equivalent to PCA when the active function is linear and
the number of hidden layers is less than that of the input layers. Thus,
AE is regarded as a generalization of PCA. Kramer [9] proposed a process
monitoring method based on autoassociative. However, AE sometimes
has poor robustness. Recently, variant autoencoders (variant AE) have
becomemore widely used for learning generative models of data. Vari-
ant AE, such as denoising autoencoders (DAE) and contractive
autoencoders (CAE), are considered an improvement in terms of ro-
bustness over traditional AEs and are able to extract robust hidden rep-
resentations of process data. DAE is an outstanding technique with
attractive application to robust feature extraction [21]. CAE explicitly
supports the robustness of hidden representations by adding the Jaco-
bean term of hidden representations to the loss function [13]. DAE and
CAE also perform well in approximating multivariable nonlinear and
complex functions. This paper employs DAE and CAE to extract robust
and nonlinear feature representations of process data. Next, two statis-
tics are constructed and the control limits of the statistics are estimated
by the kernel density estimation method.

In this paper, we discuss novel nonlinear and robust process moni-
toring approaches based on variant AEs. Variant AEsmonitoringmodels
include two monitoring models which are denoising autoencoders
model and contractive autoencoders model respectively. The CAE and

DAE are employed to extract robust and nonlinear feature representa-
tions or manifold structures underlying data from industrial processes.
A new test statistics, that is statistic H2 , is proposed and constructed
based on the robust feature representations to detect fault information.
The proposedmethods were applied to the Tennessee Eastman process
(TE process) to evaluate its monitoring performance.

2. Preliminary

2.1. Principal component analysis

PCA [14] is a multivariate statistical method which transforms mul-
tiple related variables into a lesser number of unrelated variables. It
transforms high-dimensional variable space into low-dimensional vari-
able space while retaining most of the information in the original data.
In PCA-based process monitoring, the number of principal components
is first determined by the cumulative contribution rate method. Then,
the principal component model is set up based on the loading vector
and the control limits which are calculated through normal process
data. Finally, the value of statistics is calculated from test data, through
the principal component model.

Considering a samplematrix Xwhich consists of n sample points and
m variables, the principal matrix T is the linear combination of X, that is,
T=XWwhereW=(w1,w2, ... ,wm) is the loadingmatrix,wi the ith load-
ing vector, T=(t1, t2, ... , tm), and ti the ith principal vector. X is
decomposed of the sum of the outer product between ti and wi, as in

X ¼ TWT ¼
Xm
i¼1

tiwi
T ð1Þ
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Fig. 3. Architecture of the encoder.
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Fig. 2. Architecture of the AEs neural network.
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Fig. 1. Architecture of the PCA Neural network.
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