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Methane emission has been attractingmore andmore attention. Unfortunately, a lot of factors influencemethane
emission (chemical structure of metabolites, time, methane, gas pressure, microbiome composition, diet, etc.).
We propose a new chemometric methodology to integrate different laboratory experiments in this field. Firstly,
we report (1) new laboratory experiments to measure by separating (1a)methane production (gas phase), (1b)
volatile fatty acid (VFA) distribution (liquid phase) and (1c) fatty acid (FA) distribution in rumen microbiome.
Next, we also report a new (2) chemometric methodology that integrates all the data in a single theoretical
model. The laboratory work includes two experimental sections (a) to measure the methane production, pH,
gas pressure, temperature and (b) FA distribution. Section (b) includes two different experimental parts: chro-
matographic determination of internal peak areas (IPA%) of (b.1) long-chain fatty acids (LCFA) and (b.2) VFA.
In all studies, we can use different treatments, distribution phases (media, bacteria, or protozoan microbiome),
cis/trans patterns, experimental protocols, etc. Next, we combined perturbation theory (PT), linear free-energy
relationships (LFER), linear discriminant analysis (LDA), and artificial neural networks (ANNs) to develop linear
and non-linearmodels of perturbations inmethane production–fatty acid distribution network. The best PT-LFER
model foundpresented values of sensitivity, specificity, and accuracy N 0.94, andMatthews correlation coefficient
(MCC) N 0.894 for 545,695 cases of perturbations in experimental data. Thismethodologymay be useful to quan-
tify the effect of perturbations due to the changes in experimental conditions in the study of fatty acid distribution
when we need to carry out parallel experiments in different phases.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, both nutritional and environmental scientists have
paid more and more attention to the pollution from greenhouse gas
(methane) emissions. Some methods and chemical substances have
been developed to improve ruminant growth performance and reduce
methane emission [1,2]. For instance, fatty acids (FAs) were proved to
restrain methane emission [3–5]. In addition, bacteria and protozoans
participate in themetabolismprocesses of exogenousfibre, lipid, or pro-
tein resources. There is a strong correlation between the microbe

activity (polarity, fluidity, permeability, etc.) and the cell membrane
structure compositions, mainly composited of various fatty acids. Here-
in, combined with intrinsic fatty acid compositions and exogenous pa-
rameters (e.g., pH, gas pressure, and temperature) with some outputs
(methane emission or other nutritional elements) of this complex sys-
tem should be an interesting topic to reflect the intrinsic characteristics
of complex ruminal metabolic pathways. To address this problem, it is
postulated that FA compositions in bacterial and protozoanmembranes
change with the supply of different ω-6/ω-3 ratios based on the favor-
able and detrimental scope in the diet. On the other hand, LCFAs must
be methylated by acid-/base-methylation before measurements [6].

The molecular structure of exogenous FA plays a very important
role in the accommodation of rumen metabolism pathways and pro-
cesses. It implies that it is reasonable to combine the molecular
structure properties and amount of FA in bacterial and protozoan
membranes to predict the rumen's lipid metabolism properties. In
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this sense, chemoinformatics models may become a useful tool [7]. In
our opinion, we can combine the ideas of perturbation theory (PT)
[8] and linear free-energy relationships (LFER) [9,10] to handle this
issue. As the result of this combination, we obtain PT-LFER models
that can handle the complex data generated in these studies. In addi-
tion, non-linear machine learning methods such as artificial neural
networks (ANN) [11,12] can be used to improve the predictive
power of chemoinformatical techniques in the study of complex
bio-molecular, ecological, or social systems. As a result, we can ob-
tain non-linear PT-LFER (PT-NLFER) models.

In a previous work, we developed a PT-LFER method for the first
time able to predict the FAs distribution taking multiple factors
into consideration [13]. However, the model fails to account for
some important factors like fermentation pressure, time, and tem-
perature. In the present work, we want to introduce a new theoreti-
cal methodology based PT-LFER method that is able to process
complex experimental data from metabolomics studies of methane
production incorporating many new factors. That is why the present
work consists of two main stages. The first stage of the work is aimed
to report on the original experimental dataset of fatty acid distribu-
tion in biological membranes. In the second stage of this work, we
are going to develop new chemoinformatics PT-LFER/PT-NLFER
models for the data generated. Next, the best PT-LFER/PT-NLFER
model found was used to predict the effect of perturbations on initial
boundary conditions over a large complex network of FA distribu-
tion/uptake in the ruminal microbiome. Accordingly, this work
paves the way to studying the effect of complex molecular perturba-
tion theory in FA chemical structure, the corresponding fermenta-
tion parameters and boundary experimental conditions.

2. Materials and methods

2.1. Experimental section

The experiment is presented in Fig. 1. Panel (a) shows the methane
production, pH, gas pressure (Vg), and temperature as well as (b) the
chromatographic internal peak areas (IPA%) of (b1) LCFAs in bacterial
and protozoan membrane and (b2) VFAs that were determined under
the same experimental conditions but in different experiments. The
general details of the experimental procedures used are explained as
follows.

2.1.1. Donor animal
The inoculummicrobes were provided by three adult male Pelibuey

sheep with permanent rumen-fistula (body weight, 45.0 ± 5.0 kg). The
installation methods of the rumen-fistula were according to the Mexi-
can Official Standard (NOM-220-SSA1-2002). Nutritional compositions
of fodder for donor animals refer to the description of the NRC [14].
All animal protocols and procedures were approved by the Animal
Care Committee of the National Institute of Forestry, Agriculture and
Livestock (INIFAP), Queretaro, Mexico.

2.1.2. Experimental in vitro fermentation
The in vitro fermentation details were according to the description of

Tang et al. [15]. Particle-free rumen fluidwasmixedwith artificial saliva
buffer solution [16] at a ratio of 1:2 (v/v) at 39 °Cwith continuous flush-
ing of CO2. Themicrobial and protozoan fractionswere separated by dif-
ferential centrifugation according to the description of Legay-Carmier
and Bauchart [17]. Microbial FAs were obtained according to the
method developed by Or-Rashid [6], and catalyzed by base-catalyzed
methylation. The PA(i) value of each fatty acid obtained by gas chroma-
tography (GC) was used to calculate the internal peak area, IPA (%), as
follows.

IPA %ð Þi j ¼ 100 � PA ið Þ
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wheremi refers to a FA of a sample,mi⊂ cj refers to a FA in a specific set
of experimental conditions. The denominator of Eq. (1) refers to the
sum of all PA(i) values under the same specific set of experimental
conditions. One section of experimental materials and methods are
similar to our previous paper [13]. However, in the present work, we
included new results related to the variable values of gas pressure,
CH4 production, temperature (T), time (t), and pH (see Supplementary
material SM01)

2.2. Theoretical section

The datasets of LCFAs, VFAs, CH4 production in addition to T, t, and
gas pressure in a different set of experimental conditions were calculat-
ed and dealt with according to the perturbation theory combined with
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Fig. 1. Illustration of the general workflow for in vitro fermentation experiments.
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