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Sampling inspection plans for compositional fractions based on the beta distribution are discussed. Design of
plans to control the proportion nonconforming levels are covered. It is shown that the traditional plans based
on the normal distribution fail to maintain the desired risks. Plans based on the beta distribution are not only
suitable for bulk product inspection, but they also achieve considerable economy when composite samples are
used in testing.
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1. Introduction

Compositional characteristics are the primary quality measures
for bulk materials. For example, the percentage protein is a primary
quality measure for milk products, and a minimum protein limit of
34% is set for milk powders, see Ref. [1]. Compositional fractions
can be modeled using the beta distribution. Published literature on
the use of the beta distribution for quality control applications is
sparse. Beta distribution is mainly used only as a prior probability
distribution for proportion nonconforming in the quality literature.
Ref. [2] employed the beta distribution for controlling the mean of
the fraction of material having a given characteristic having either
single or double sided specification limits. His work was motivated
by an application problem involving the percentage of fine product
for a refractory cement. Ref. [3] provided a broader computer inten-
sive approach to designing sampling inspection plans for composi-
tional fractions for a given point on the operating characteristic
(OC) curve assuming non-normal distributions.

Designing sampling inspection plans for the beta distribution is use-
ful for food quality assurance because many of the food quality mea-
sures are compositional fractions. Sampling inspection plan design of
Ref. [2] is improved in Section 2. Design of beta distribution based
plans for given two points of the OC curve is discussed in later sections.
A case study is provided at the end.

2. Sampling plans for mean compositional fraction

Let X, the compositional fraction in unit mass g, follows the beta
distribution whose density function is given by

Beta a; bð Þ ¼ 1
B a; bð Þ x

a�1 1� xð Þb�10 b x b 1; a N 0; b N 0 ð1Þ

where B(a,b)=Γ(a)Γ(b)/Γ(a+b) is the beta function. The beta density
is also reparameterized in terms of the expected value E(X)=μ=a/
(a+b) and precision parameter θ=a+b as Beta(μθ, (1-μ)θ). For large
θ, Var(X)=ab/[(a+b)2(a+b+1)]≃ab/θ3.

A probability distribution is termed as a flexible distribution when it
has at least one shape parameter. The shape parameter enables the dis-
tribution to take numerous shapes for its density so that a variety of data
sets can bewellmodeled. The beta distribution is a highly flexible distri-
bution because both of its parameters are shape parameters. As a result,
both left and right skewed densities can be fitted to the data in addition
to symmetric densities. The normal or Gaussian density has a fixed
shape and its parameters model just the change in the location and
scale of its density. As a result, the normal distribution becomes inflex-
ible to model compositional proportions data which often show a vari-
ety of shapes. Even though we cannot directly give a physical meaning
to the beta parameters a and b, their sum (a+b) is an inverse measure
of variability in the quality characteristic. However the standard beta
distribution can be reparameterized in terms of its mean and this
particular form is mainly discussed in this paper.

Let the total bulk material amount sampled be G (such as 100 g,
200 ml). G can be expressed as a multiple of the standard or primary
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unitmass g. Letm=G/g (which need not be an integer). The quantitym
is similar to the sample size defined for discrete or non-bulk items. Let
the random variable μ ̂ be the mean compositional fraction for amount
G. Note that μ ̂ can be a single measurement based on a well mixed
composite, and need not be the arithmetic mean of m measurements
of individual test samples.

The distribution of μ ̂ was approximated as Beta(mμθ,m(1-μ)θ) by
Ref. [2]. The means and variances of μ ̂ and Xwere matched as follows:

E μ ̂ð Þ ¼ E Xð Þ ¼ a= aþ bð Þ ¼ μ; ð2Þ

Var μ ̂ð Þ ≃ Var Xð Þ=m ¼ μ 1� μð Þ= m aþ bð Þ½ �: ð3Þ

This approximation is very similar to the one given by Ref. [4] for the
sum of beta random variables; also see Ref. [5].

For the case of upper specification limit μU, the lot acceptance crite-
rion is fμ ̂ b κg, and this inequality is reversed for the lower specification
limit μL. For given acceptable mean level μAQL, producer's risk α,
rejectable mean level μLQL, and consumer's risk β, Ref. [2] solved the
equations

Pr μ ̂ b κjμ ¼ μAQL

� �
¼ 1� α ð4Þ

Pr μ ̂ b κjμ ¼ μLQL

� �
¼ β ð5Þ

to determine the critical limit κ for a given θ. The example given in Ref. [2]
sets μAQL=1%, α=5%, μLQL=5%, β=5% and θ=300. The critical value κ
was obtained as κ=0.253 for an optimum m of 0.535 based on the beta
distributions Beta(mμAQLθ,m(1-μAQL)θ) and Beta(mμLQLθ,m(1-μLQL)θ);
see Fig. 1. It should be noted that this design procedure does not explicitly
use the specification limit μLor μU but the direction of the inequality in the
acceptance criterion depends on it.

3. Sampling plans for proportion nonconforming
compositional fraction

Variables plans for controlling the proportion nonconforming p are
commonly used when compared to sampling plans which control just
the mean. The beta distributions shown in Fig. 1 show considerable
overlap even when the acceptable and rejectable mean levels are far
apart. The proportion nonconforming p obviously depends on the spec-
ification limits L and/or U set for the compositional characteristic X.

First consider the case of the lower specification limit Lwhich results
in p=Pr(XbL |μ,θ). The sampleG gives the estimatedmeanμ ̂and hence

the proportion nonconforming estimate p̂ ¼ PrðX b Ljμ ̂; θÞ for a given θ.
Similar to the variables plan based on the normal distribution (see
Chapter 10 in Schilling and Neubauer [6]), an acceptance criterion
based on the estimated mean and standard deviation of X can be set
up. Consider the lot acceptance criterion μ ̂� kσ ̂ N L (or μ ̂þ kσ ̂ bU for
the upper specification limit) where σ ̂ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ ̂ð1� μ ̂Þ=θ

p
, the estimated

standard deviation of X. It should be noted that σ ̂ is different from the
usual sample standard deviation S and depends only on the estimated
beta parameter μ .̂ The sampling distribution of the acceptance criterion
μ ̂� kσ ̂ (or μ ̂þ kσ)̂ cannot be easily approximated as a beta distribution
(as was done for μ)̂ or in any other closed form.Monte Carlo simulation
can be employed instead.

It can be noted that the approximation σ ̂≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ ̂ð1� μ ̂Þ=θ

p
matches the

formula for the standard error of an estimated binomial nonconforming
proportion when n=θ discrete items are tested. For bulk material, test-
ing a single composite sample is sufficient as long as the n equal volume
samples are thoroughlymixed. If aliquots of individual samples of equal
volumes are physically well mixed, the single measurement of a com-
posite sample is equal to the arithmetic mean of the individual sample
values, see Chapter 7 in Ref. [7]. Ref. [8] discussed food safety applica-
tions when mixing is imperfect. Unlike the sanitary and safety charac-
teristics covered in Ref. [8], compositional characteristics are easy to
homogenize (for example, by blending).

The plan parameters G (or m) and k can be determined for given
two-points of the OC curve. Let p1 be the acceptance quality limit
(AQL) for the proportion nonconforming compositional fraction, and
p2 be the rejectable or limiting quality limit (LQL). Let α and β be the
producer's and consumer's risks respectively corresponding to p1 and
p2. The proportion nonconforming p is a function of μ and θ and hence
the OC function Pa(p) can be expressed as PaðpÞ ¼ Prðμ ̂� kσ ̂NLjμ; θ; k;GÞ.
The two point design imposes the conditions Pa(p1)=1-α and
Pa(p2)=β. The amount G or m controls the variability in the estimates
μ ̂ and σ ̂ while k mainly influences the achieved producer's and
consumer's risks.

For a given upper specification limit U and known θ, themean levels
μ1 and μ2 corresponding to the desired p1 and p1 can be found. For exam-
ple, the upper specification limit U for water ormoisture composition in
milk products is usually 5%, see Ref. [1]. For p1=0.01 and p1=0.05, the
corresponding mean levels μ1=0.0403 and μ2=0.04312 can be found
using the beta distribution function, see Fig. 2. For fixed α=0.05 and
β=0.10, the variables plan based on the normal distribution can also
be found. R software package AcceptanceSampling of Kiermeier [9]
gives the normal distribution based known sigma variables plan param-
eters as n=19 and k=1.949 for p1=0.01 and p1=0.05. Here n denotes
the sample size under the normal model and is distinguished from the
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Fig. 1. Design example of Ref. [2].
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