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A stochastic regression model is presented that separates signal from noise in chemical spectra. Spectra are
decomposed into additive contributions from signal and fromestimated noise. Numerical results on sample spec-
tra are presented and suggest that this strategy offers an effective and computationally efficient framework for
comprehensive noise estimation and analysis. From this analysis more effective methods of feature extraction
in chemical spectra can be created.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In every study employing chemical spectroscopy a point is reached
where the analyst must reduce the original volume of spectroscopic
data into specific, unambiguous observations. These are typically the
existence, position, and intensity of any and all peaks in the collected
spectra where peak is defined commonly as a “significant” increase in
the measured intensity above a baseline value. The questions the ana-
lyst must answer are: Are there any peaks in the spectrum? If so, what
is the best estimate of the position and relative size of each purported
peak? Peak position is required when compound identification is the
primary goal; peak intensity is required when quantitative information
is the goal. Often pre-processing of the collected spectra is performed to
reduce the size and complexity of the data set. One of the most com-
monly employed pre-processing steps is the reduction of noise where
noise is defined ambiguously as that part of the spectrum that is not sig-
nal. Smoothing (e.g., running averages) and frequency domain filtering
(e.g. Fourier, wavelet) are themost common of themany available noise
reduction methods [1]. In addition to peak picking, the challenges of
spectrum abscissa calibration, baseline correction, alignment of multi-
ple spectra, and intensity normalization between spectra all benefit
from separating signal from noise [2–4].

To a limited extent functional modeling of spectra has been studied
previously. The work most similar in spirit to that presented here was
performed by Coombes et al. [5] in 2005. They represented the raw

observed signal as a three-term sum of the signal plus a slowly-
varying background plus random noise. They develop a method to
denoise spectra using an undecimated discrete wavelet transform,
UDWT. Following denoising the baseline is removed by fitting a mono-
tone local minimum curve and peaks detected after normalization. In a
similar veinMorris et al. [6] developed functional mixedmodels using a
Bayesian wavelet approach for the simultaneous modeling of multiple
spectra with non-parametric representation of the fixed and random
effects. House et al. [7] used functional modeling of the spectrum
where each peak is modeled as a probability density function such
that the signal is modeled as a sumof such probability density functions
and the background is modeled as an exponentially decaying function.
Themodel is estimatedusing Bayesian approach based on Lévy adaptive
regression kernels.

In this paper a different approach is taken.Mass spectra aremodeled
using stochastic differential equations (SDE) [8–10]where both the drift
(signal) and the diffusion (noise) coefficients depend on time. In this
way the frequency and the intensity of the signal and of the noise are
allowed to vary independently across the spectrum. The SDE coeffi-
cients are estimated using a nonparametric technique based on kernel
regression. The benefit of the stochastic regression model is that it
seeks to decompose the spectrum into signal plus estimated noise.
Havingdone this peaks that rise above the noisemay be easily identified
and features that do not rise above the level of noise can be subjected to
further scrutiny. The stochastic regression model does away with the
need for smoothing or filtering and the difficulties analysts face in
choosing the right smoothing method.

Stochastic regression modeling is intended to yield enhanced peak
picking information by providing a method to eliminate peaks that
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have the same frequency and intensity as the approximated noise. Sto-
chastic regressionmodeling can also provide a simulation tool to gener-
ate large amounts of statistically meaningful spectra in very little time.
Having an estimate of the noise, acquired from an unbiased operator-
independent regression, allows peak characteristics (height, relative
area, distance to the nearest peak, etc.) to be compared and contrasted
rapidly with local noise features. Peaks with, for example, heights that
are less than the intensity of the noise estimated in exactly the same
region would generate suspicion and perhaps elimination. Simulation
experiments could be run to ascertain coarse grained spectral informa-
tion only apparent in larger data sets. The noise estimate can also be
useful when tuning instrument parameters, for example, instrument
settings that minimize noise may not be the same as those settings
that maximize signal to noise. Clearly having an unbiased estimate of
noise in the spectrum would be a useful tool for the analyst.

2. Time-dependent stochastic differential equation model

The dynamic behavior of the chemical spectrum is assumed to be
described by the following time-dependent SDE:

dXt ¼ μ t;Xtð Þdt þ σ t;Xtð ÞdWt ; ð1Þ

where μ(t, Xt) and σ(t, Xt) are the drift (signal) and diffusion (noise)
coefficients respectively of the process Xt. Here, Wt is the standard
Brownian motion with independent and normally-distributed incre-
ments where E[dWt] = 0 and Var[dWt] = dt. It can be seen that this
model captures the behavior of the spectrum which models with
constant coefficients fail to capture. To be able to work with a model
that is estimable given one trajectory of the spectrometer the following
subclass of the SDE (1) is considered:

dXt ¼ a0 tð Þ þ a1 tð ÞXt½ �dt þ b0 tð ÞXtdWt ; ð2Þ

with the coefficients assumed to be twice continuously differentiable.
Given the data Xti

at discrete points t1 b t2 b … b tN + 1 equally spaced
in time, the coefficients in Eq. (2) are estimated using a nonparametric
technique as proposed in [11] for the estimation of financial term struc-
ture dynamics (for a review see Fan [12]). This estimation method is
described in the next section.

3. Estimation of the SDE coefficients

A first order Euler–Maruyama discretization of Eq. (2) is given by:

ΔXi ¼ a0 ið Þ þ a1 ið ÞXi½ �Δþ b0 ið ÞXiΔWi; ð3Þ

where Δ= ti+1− ti,ΔXi ¼ Xtiþ1
− Xti

, aj(i) = aj(ti), b0(i) = b0(ti), andΔ
Wi ¼ Wtiþ1

−Wti
. ThenΔWi ∼N(0,Δ). For data observed at very closely

spaced time steps the Euler discretization is a good approximation of
the continuous time model (see [9]). The drift term is estimated using
local weighted regression and the diffusion term is estimated using
the maximum likelihood principle.

3.1. Estimation of the drift coefficients

The linear regression of ΔXi
Δ over Xi and a constant leads to an equa-

tion of the following form:

ΔXi

Δ
¼ αXi þ β þ ε

where the coefficients α and β are obtained as minimizers of the corre-
sponding least squares problem and ε is Gaussian error. Following [11]
we use local kernel regression over (t0 − h, t0 + h) at each point t0
where h is called the bandwidth parameter. The drift coefficients are
then approximated by constants aj(t) ∼ aj(t0), j = 0, 1 in the small

neighborhood determined by h around t0. As in [13], the Epanechnikov
kernel

Kh ¼ 3
4h

1−u2
� �

; −1≤ u b 0
¼ 0; u b−1; u N ¼ 0

is used to assign weights so that points closer to t0 are given more
weight than points farther away. It also uses only those points which
lie within the window of size h. The local weighted linear regression
leads to the following quadratic minimization problem at each point i:

min
a0 ið Þ;a1 ið Þ

XN
j¼1

ΔX j

Δ
−a0 ið Þ−a1 ið ÞX j

� �2

Kh
t j−ti
h

� �
; ð4Þ

where the approximation aj(t)= aj(i), j=0, 1 for t∈ [ti− h, ti) over the
window of regression is valid. Setting the first derivative with respect
to a0(i) and a1(i) equal to zero the following first order conditions are
obtained:

XN
j¼1

ΔX j

Δ
−a0 ið Þ−a1 ið ÞX j

� �
Kh

t j−ti
h

� �
¼ 0

XN
j¼1

ΔX j

Δ
−a0 ið Þ−a1 ið ÞX j

� �
Kh

t j−ti
h

� �
X j ¼ 0:

The weighted least squares estimators of aj(i), j = 0, 1 and i =
1, 2, …, N are obtained as solution of the above equations:

â0 ið Þ ¼
XN

j¼1
Y j−a1 ið ÞX jΔ
� �

Kh

Δ
XN

j¼1
Kh

ð5Þ

â1 ið Þ ¼
XN

j¼1
Kh

XN
j¼1

YjX jKh−
XN

j¼1
YjKh

XN
j¼1

X jKh

Δ
XN

j¼1
Kh

XN
j¼1

KhX
2
j−

XN
j¼1

KhX j

� �2� � ; ð6Þ

where Yj = Xj+1 − Xj and Kh ¼ Kh
t j−ti
h

� �
.

3.2. Estimation of the diffusion coefficients

Under the stochastic regression model presented here, the residual

ΔXi− â0 ið Þ þ â1 ið ÞXi½ �Δ

is modeled as

ΔXi− â0 ið Þ þ â1 ið ÞXi½ �Δ ≈ b0 ið ÞXiΔWi ð7Þ

for all i = 1, 2, …, N where ΔWi ∼ N(0, Δ). Let

ΔXi− â0 ið Þ þ â1 ið ÞXi½ �Δffiffiffiffi
Δ

p ¼: Êi: ð8Þ

Given information up to time ti the following holds from the normal-
ity and independent increments property of the Brownian motion:

Êi ∼N 0; b0 ið ÞXið Þ2
� �

:

Then the conditional density of Êi given information up to time ti is:

2π b0 ið ÞXið Þ2
� �−1=2

exp − Ê2i
2 b0 ið ÞXið Þ2

 !
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