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In this paper, a new variable selection algorithm is described, based on leaps and bounds regression. The
algorithm removes the limit of the traditional algorithm that the descriptors must be less than the samples, by
replacing the original variables in a subset evaluation with a small number of principal components. Two differ-
ent sizes of variables data sets were employed to investigate the performance of the new algorithm. The result
shows that the improved algorithm can obtain optimal or good sub-optimal subsets when a different number
of principal components are used.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multiple linear regression (MLR), principal component regression
(PCR) and partial least squares (PLS) are the standard linear multivari-
ate regression methods widely used in quantitative structure–activity
relationship (QSAR) and spectroscopy studies. Multiple linear regres-
sion models are simpler and easier to interpret than themodels obtain-
ed by PCR or PLS, since the latter performs regressions on latent
variables that do not have physical meanings [1]. However, MLR usually
requires the selection of a suitable subset of variables in order to ensure
proper numerical conditioning and to minimize the propagation of
random errors.

Nowadays, with the development of modern chemistry and
computer science, more and more molecular descriptors are available
for the QSAR/QSPR modeling. Moreover, spectroscopy for broad-
spectrum techniques such as near-infrared and ultraviolet generally
characterizes a chemical sample with hundreds of wavelength
variables. Variable selection techniques have become a critical step in
MLR [2].

Up to now,many algorithmswere reported in the literatures, such as
forward selection, backward elimination, stepwise method, leaps and
bounds regression [3,4], genetic algorithm (GA) [5], tabu search (TS)
[6], successive projection algorithm (SPA) [7], competitive adaptive
reweighted sampling (CARS) [8] and many others [9,10].

In those algorithms, leaps and bounds regression has gained signifi-
cant interest, owe to it can obtain the same subset regression equation
as exhaustive search algorithms [4,11–13]. In the algorithm, the residual
sum of squares (RSS) is used to evaluate a subset. However, there is an

inherent shortcoming: the number of variables (P)must be smaller than
the number of samples (n). When P is bigger than n, it is impossible to
calculate the residual sum of squares. As a result, the leaps and bounds
algorithm cannot progress.

In this study, the purpose is to modify the current leaps and bounds
algorithm to make it suitable for the situation that the number of
samples is much smaller than the number of variables (large p,
small n). In addition, the algorithm is expected to be accelerated.

2. Methods

2.1. Variable selection

Variable selection involves selecting a subset of relevant variables
that maximizes the accuracy of regression or classification according
to a fitness criterion function J, e.g., selecting p variables from total P
variables of n samples. If the fitness criteria value of the selected subset
is the largest (or smallest) among all possible subsets, which indicates
the best performance, the subset will be the optimal subset. Variable
selection is common in machine learning, and many advanced algo-
rithms have been proposed. Algorithms based on sequential search
strategies are widely used because they are computationally attractive
[14–16]. However, these algorithms generally produce a sub‐optimal
subset, which may be seriously influenced by the ‘nesting effect’.
Currently, stochastic algorithms are the focus of research in this field.
A number of useful algorithms have been developed, including the
genetic algorithm (GA) [5], ant colony optimization (ACO) [9], particle
swarm optimization (PSO) [10], simulated annealing (SA) [17] and
many improved or hybrid algorithms [18–20]. However, using the
same stochastic algorithm and data set, the results may differ in
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different trainings. It is a common practice to trainmultiple times to ob-
tain the best result or to combine different variable subsets together.
Thus, these algorithms cannot ensure an optimal subset.

The fitness criterion is a function that evaluates the subsets'
performance. It plays an important role in the accuracy and robustness
of the result. Some fitness criteria are listed below:
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i¼1Yi−Ŷ2 ð1Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

Xn
i¼1

Yi−Ŷ
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where Yi, Ŷ,and Y are the real value of the response, the value calculated
by the regression function, and the average value of response, respec-
tively. n is the number of samples, and p is the number of selected
variables. RSS, r, s, F, and FIT are the fitness criteria in themodel, where-
as PRESS, Q2, Spress, and SDEP are the fitness criteria calculated by leave-
one-out cross validation. Thesefitness criteriamay evaluate the predict-
ability for data beyond the model.

A simplemethod to obtain an optimal subset is an exhaustive search,
whose computing complexity increases by exponential law with

dimensions. The branch and bound algorithm and the leaps and bounds
regression algorithm are two ways to obtain an optimal subset without
a full search. The algorithms are based on amonotonousfitness criterion
J. If

A⊆ B⊆ C: ð10Þ

Then the criterion function J should satisfy:

JA≤ JB≤ JC or JA≥ JB≥ JC ð11Þ

where A, B, and C are the variable subsets consisting of certain variables
selected from the total variable set. Set B is a subset of C, andA is a subset
of B, and JA, JB and JC are their fitness criteria values. This means that the
father set containing more independent variables must have better
fitness criteria than its subsets. Among the fitness criteria listed above,
only RSS, r, PRESS and Q2 satisfy this requirement. Other fitness criteria
containing thenumber of selected variablesmay be used to examine the
variable selection results for subsets with different sizes. The selection
of the fitness criterion is not discussed in this study. The correlation
coefficient r is used as a fitness criterion function.

2.2. The branch and bound algorithm

In the branch and bound algorithm, all of the possible subsets are
organized into an inverse tree structure, as Fig. 1 shows. Every node in
the tree stands for a subset of variables. The indexes of variables are
marked on it. The root node containing all variables is on the top of
the tree. One variable will be removed when traveling from a father
node to its child node. The removed variable is shown on the line
between the two nodes. In a child node, the location of the last removed
variable is marked with a dot. Then the problem of finding the optimal
variable subset can be transformed to traveling the inverse tree to find
the node containing the optimal subset.

According to the monotonicity of the fitness criterion function, if an
evaluated set is not as good as a known set containing less or the same
number of variables, its child subsetsmust beworse than the known set.
Thus, these subsets of the evaluated set do not need to be evaluated. The
branch of these sets can be ‘cut off’. The current best nodes with differ-
ent sizes and fitness criteria are stored. They are used to check whether
an evaluated node should evaluate its child nodes or cut off that branch.
Therefore, the algorithms can involve all of the possible subsets without
checking every subset. It can get the same result as a full search but
deeply reduces the computation of the full search.

A basic branch and bound algorithm for feature subset selectionwas
proposed by PMNarendra andK. Fukunaga. Several improvements have
been made, including: (I) reordering the nodes before and during
searching the tree [21,22]; (II) cutting off more unnecessary branches
[23–25]; and (III) using a simple prediction mechanism to estimate

Fig. 1. The inverse tree for the branch and bound algorithm.
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