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a  b  s  t  r  a  c  t

A  special  cubic  spline  for histograms  was  examined  as  a possible  tool  for the  processing  of  mass  spec-
trometry  data.  Algorithms  of  interpolating  and  smoothing  cubic  splines  are  described  shortly.  It  was
shown  that peak  apex  localizations  using  splines  yield  similar  results  as peak  apex  determinations  using
parabolas  and centroids  for high  intensity  peaks,  while  for low  intensity  peaks,  the peak  apex  localiza-
tions  using  splines  are  superior.  It also  was  shown  that  peak  localization  accuracies  for  real  experimental
time-of-flight  mass  spectral  data  are  higher  in  case  of  peak  localizations  that use  apex  determinations  as
compared  to peaks  determined  by centroid  or Gaussian  approximation  of  peaks.  Some  examples  of peak
detection  algorithms  using  splines  are  given.  A  new  method  of  peak  intensity  calculations  is  proposed
taking  into  account  the baseline.  All approaches  are  directly  applicable  for the  processing  of TOF  MS  data,
though  specific  changes  may  be desirable  for  other  MS  data.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

One of the most important parameters of mass spectrometers
is the achievable mass accuracy. It was shown that centroid peak
location [1,2], mass resolving power R, and mass accuracy �m/z
(measured in ppm) are connected to each other by the relation:

�m/z = 106

R
√

N
, (1)

where N is the number of ions in the peak. In case 1/R is substituted
by a mean square width of a peak, Eq. (1) is just a standard error
of the mean [3]. However, two things should be taken into account
about Eq. (1). First, the m/z scale is absolute, in other words, the error
of the m/z  scale calibration can be disregarded. Second, the peak
localization error corresponds only to a “good” shape of the peak,
such as a Gaussian with fast disappearing tails. Hence, Eq. (1) may
be considered as an upper/lower limit for a mass accuracy/error.
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The regular mass calibration law in time-of-flight mass spec-
trometry is [4,5]:

ti = t0 + k1(m/z)1/2
i

+ k2(m/z)i + · · · + kp(m/z)p/2
i

. (2)

where all calibration coefficients t0, k1, k2, . . .,  kp can be found using
linear regression [3]. Actually, only the first two  terms in Eq. (2)
have a physical meaning and are usually sufficient for a good mass
calibration. Some investigators reported an increase of mass accu-
racy when higher order terms were used [4,5] in Eq. (2). However,
supposedly, higher terms just describe biases correlated with inten-
sity ratios between peaks used for calibrations, though in special
cases like MALDI-TOF MS  with delayed extraction, higher terms in
Eq. (2) may  be obligatory for a correct mass calibration [6].

In the case of mass spectrometry, it is possible to use a more con-
venient representation of Eq. (2) by expanding m/z  into a series of t
[7]. Hence, the simplest and adequate equation for mass calibration
in TOF MS  mass spectra is

m/z =
(

t − t0

k1

)2
. (3)

As mentioned above [8], peak localizations using centroids are
not ideal in case of peak tails. Another variant of a peak localiza-
tion is to approximate a peak by a Gaussian function. However, a
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Gaussian approximation may  yield even more erroneous results
because of peak asymmetries and tails [9]. It can be productive
to use only points in a peak above a baseline or use only a small
number of neighboring points around a peak top for the centroid
estimation. In addition, polynomials of higher than second order
can be used for the description of a quasi-Gaussian peak [9]. How-
ever, unfortunately, all these methods lead to an overcomplication
of the data processing algorithms. Also, it is interesting to note, that
centroids in time and m/z  scales do not coincide exactly with each
other. For example, if Eq. (3) was used, then

m/z =
(

t − t0

k1

)2
=

(
t̄ − t0

k1

)2

+ (t2 − t̄2)

k2
1

= ((t̄ − t0)2 + �2
t )

k2
1

,

(4)

where over-lines denote centroid values (or averages).
In the current work, a more sophisticated way of peak apex

localizations is chosen by using cubic spline functions [10,13].
Previously, classical spline approximations were used in the
processing of mass spectrometric data to calibrate the mass scale
of static magnetic mass spectrometers [2,11] as well as for base-
line approximations [12]. The method of so-called quasispline
approximation for peak apex localizations and mass resolution
enhancements was described also [8,9,12]. As mentioned already,
the spline interpolation produces more exact results, while using
high-order interpolating polynomials is less effective due to the
so-called Runge phenomenon [10,13]. By using spline functions,
it is possible to not only easily locate peak maxima but also to
estimate other peak parameters like peak widths and peak areas,
which could be useful for some applications. In addition, since cubic
spline coefficients contain approximations of peak shapes and their
derivatives [10,13], cubic splines can be used as part of peak detec-
tion algorithms. Moreover, as will be shown below, a smoothing of
raw mass spectral data is also possible [10,13].

The main objective of the work here is to examine a special
cubic histogram spline as a possible tool for mass spectrome-
try data processing. Histogram splines of arbitrary orders were
already developed earlier [14], which we will call here as his-
tosplines, for short. Using histosplines, more exact estimations of
peak parameters can be obtained, because time-of-flight peaks are
also histograms of ion flow probability distributions. This assump-
tion could not only be valid for ion counting detection systems,
where time to digital converters (TDC) are used, but also for ion
detection systems that use transient recorders with analog to digi-
tal converters (ADC), because any ADC has a finite window in a time
scale.

2. Theory

A spline function is a continuously differentiable piecewise
polynomial of desired order that interpolates raw data at an arbi-
trary time position between ti−1 and ti time bins. In the work here,
all splines are restricted to third-order polynomials:

Si(t) = ai + bi(t − ti−1) + ci(t − ti−1)2 + di(t − ti−1)3. (5)

For regular spline interpolations, the coefficients ai, bi, ci, and di
can be obtained from the conditions:

Si(ti) = Si+1(ti) = Ii

Si
′(ti) = Si+1

′(ti) = bi+1

Si
′′(ti) = Si+1

′′(ti) = 2ci+1

, (6)

where Ii is an ion current intensity measured at an ith spectrum
point. For M + 1 of raw data points, all coefficients in Eq. (5) can be
expressed via ci [10,13]. Assigning further for equally spaced data:

ti − ti−1 = h = 1 (7)

where the ci can be obtained [10,13] by:

ci + 4ci+1 + ci+2 = 3Ii − 6Ii+1 + 3Ii+2 (8)

In order to solve Eq. (8), additional assumptions are necessary.
In a regular cubic spline [10,13], it can be assumed that

c1 = cM+1 = 0 (9)

In ref. [15], the condition of a minimum norm of third deriva-
tive’s breaks was  proposed to estimate boundary condition for
splines. However, in this case, the obtained matrix for the sys-
tem of equations is not a Toeplitz band [16]. Hence, relatively slow
algorithms for solutions should be used. Admittedly, this could be
dramatically slow for big data sets.

In case of a histospline, the first of Eq. (6) can be rewritten as:

ti∫
ti−1

Si(t) dt = Ii (10)

Si(ti) = Si+1(ti) = ai+1 (11)

So that Eq. (8) can be transformed to:

ci + 11ci+1 + 11ci+2 + ci+3 = 12Ii − 24Ii+1 + 12Ii+2. (12)

Thus, one extra boundary parameter can be set as compared to
a regular spline. It is possible, for example, to set:

c1 = cM = cM+1 = 0. (13)

Necessity of this additional parameter follows from the fact
that one Ii value corresponds to two  time bins, ti−1 and ti. Please,
also, note that third-order histospline corresponds to a fourth-order
spline accordingly to,

t∫
0

Si(t) dt =
k=i−1∑
k=0

Ik + ai(t − ti−1) + bi

2
(t − ti−1)2 + ci

3
(t  − ti−1)3

+ di

4
(t − ti−1)4, (14)

where t is between ti−1 and ti, and I0 = 0.
In order to remove experimental noise from the raw data,

smoothing can be applied. The data smoothing is using splines eq.

(1 − p)
M∑

i=1

(Ii − S(ti))
2

�i
2

+ p

tM∫
0

(S(m)(ti))
2

dt → min (15)

needs to be minimized [13], where, p is a smooth factor, �i are
the weightings and m is an order of a spline derivative. Eq. (15) is
a classical Lagrange eq. for a conditional extremum problem [17].
Alternatively, it is possible to use a smoothing algorithm [8,9,18]
first and to build then an interpolating spline (without smoothing).

Please note that cubic splines can be expressed as linear combi-
nations of B-splines [10,13,19]

S(t) =
∑

i

˛iBi,n(t). (16)

At case of cubic splines, order of B-splines is n = 3 in Eq. (16).
However, for cubic histosplines, fourth-order B-splines need to be
used. Splines of any order can be easy obtained using B-splines.
However, in this work, regular spline Eq. (5) was used, as it is more
computationally simple especially for cubic splines [10,13,19].
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