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a  b  s  t  r  a  c  t

An  analogy  is established  between  functionalized  polymers  and  partially  cyclic  macromolecules  (PCMs)
in  the liquid  chromatography  at critical  conditions  (LCCC).  Application  of  the  functionalized  chain  analogy
(FCA)  for  prediction  of  the behavior  of complex  multi-cyclic  PCMs  in  the  LCCC  mode  is demonstrated.  By
using  FCA,  we  discuss  possibilities  of  LCCC  to  separate  multi-cyclic  PCMs  by  the  number  of  cycles,  and
with  respect  to  molecular  topology.  FCA  is also  extended  to  describe  PCMs  with  specifically  adsorbing
groups;  this  results  in  a simplified  theory  of  LCCC  of  functionalized  PCMs.  By simulating  chromatograms
of  heterogeneous  functionalized  PCMs  at the  conditions  of  LCCC,  we  show  possible  dramatic  effects  of
functional  groups  on  the  topological  separation  of  PCMs:  even  the retention  order  of  components  may
change  to  opposite.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Liquid chromatography at critical conditions (LCCC) is a special
mode of interactive chromatography of polymers. It is realized at
week adsorption interactions corresponding to the critical interac-
tion point (CIP), where the entropy losses of a linear macromolecule
in a pore are compensated by an energy gain due to the adsorption.
LCCC takes its origin from the studies, where the critical adsorp-
tion conditions were discovered [1,2], and the chromatographic
behavior of homopolymers at these conditions was  explained the-
oretically [3,4]. A basic feature of the LCCC mode is that at the CIP,
the chromatographic retention is not affected by molar mass dis-
tribution, but stays sensitive to other types of chain heterogeneity
[5].

In particular, a possibility to separate by LCCC polydisperse
polymers according to the number of functional groups was  pre-
dicted [6], and verified [7]. LCCC mode also turned out useful
in studies of topologically different polymers. The separation of
linear and ring macromolecules by LCCC, predicted by the the-
ory [8], was really achieved experimentally [9]. In subsequent
years, critical conditions of adsorption were found for many of
experimental systems; excellent LCCC separations and analyses of
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functionalized and macrocyclic polymers were reported. Nowadays
LCCC has become a recognized method for analysis and separation
of functionalized and cyclic macromolecules [10–14].

In recent years, great progress has been achieved in the synthesis
of complex macrocyclic polymers with predetermined molecular
topology [15–18], which resulted in making eight-shaped, theta-
shaped and manacle-shaped polymers [16], as well as even more
complex structures, such as double-eight and double-trefoil macro-
molecules [19].

Method development for chromatographic separation of such
complex polymers can be facilitated by using approaches based on
the molecular theory. In addition to the theory of chromatogra-
phy of linear and ring polymers [20], extensions describing several
types of more complex cyclic polymers, such as eight-shaped and
theta-shaped macromolecules [21,22], have been reported. Some
results of these theories found the experimental confirmation
[22,23]. Recently we  have developed a theory of chromatogra-
phy for partially cyclic macromolecules (PCMs), having tadpole-
and manacle-type topological structures [24].1 In principle, it
seems possible to construct similar theories for topologically more
complex macromolecules. However, with increasing topological
complexity, theories will become increasingly complicated, and it
will be difficult to use these theories.

1 Unfortunately, some references in [24] have not been properly updated. We
apologize to readers for a number of misleading references in [24].
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Fig. 1. Examples of complex partially cyclic macromolecules of different topology.
(A)  tadpole-type structures; (B–D) bridged multi-cyclic structures (B) PCMs with
one bridge, (C) linearly-bridged PCMs with two bridges, (D) star-bridged PCMs.

In the present paper, we therefore propose another theoretical
approach, which is based on the similarity of the LCCC behavior
of functionalized macromolecules and PCMs. By comparing theo-
retical results for tadpole- and manacle-type polymers at the CIP
[24] with the well-known results of the LCCC theories of func-
tionalized polymers [5,25–28], we establish an analogy between
functionalized macromolecules and PCMs at the CIP.

We  will demonstrate how the approach, based on the function-
alized chain analogy (FCA), can be applied to predict LCCC behavior
of complex multi-cyclic PCMs, e.g. having topological structures
shown in Fig. 1.

FCA will be also extended for describing PCMs with specifically
adsorbing groups. This will result in a simplified theory of LCCC of
functionalized PCMs.

2. An analogy in the behavior of functionalized
macromolecules and simple PCMs at the CIP

The theories of LCCC [5,8,20–28] operate with a distribution
coefficient K, which characterizes the chromatographic retention
at the CIP, and use a model of an ideal-chain polymer in a slit-like
pore. A macromolecule is modeled by a chain of N segments, having
the contour length Ns,  where s is the segment length. There are two
length-dimensional parameters in this problem. One parameter is
the radius of gyration of the chain R = s

√
N/6∼√

M. The second
parameter is the pore width, which will be denoted as 2d. In fact,
a dimensionless macromolecule-to-pore size ratio g = R/d appears
in the theory.

The theoretical result for a linear chain is very simple – at the CIP,
the distribution coefficient of a linear polymer KL does not depend
on g:

KL = 1 (2.1)

The LCCC theory for a ring polymer [5,20] results in different
equations. Here and in the rest of the paper we consider situations
of gR < 1, where rings are small compared with the pore width.
According to [5,20], at gR < 1, the distribution coefficient of a ring
equals:

KR = 1 +
√

�

2
gR (2.2)

where gR = RRing/d.  Note that RRing = s
√

N/6  is not the radius of
gyration of a ring, it equals to the radius of gyration of a linear chain
having the same contour length (and therefore the same molar
mass M)  as the ring.

Theories describing LCCC of functionalized macromolecules and
PCMs use similar models (see Fig. 2). It was mentioned in Ref. [24],
that at the CIP, features of the chromatographic behavior of man-
acles and di-functional macromolecules with adsorptive terminal
groups are rather alike.

Really, there is an analogy in the behavior of PCMs and func-
tionalized polymers. This analogy is based on the fact, that at the
CIP, there is an effective attraction of rings to pore walls, attraction
of entropic (topological) nature [20]. Attractive pseudo-potentials
for an adsorptive functional group and for a ring at the CIP are
depicted in the inserts to Fig. 2a, b. Due to this fact, chain con-
formations, determining the behavior of mono- and di-functional
macromolecules (such as chains with one and two  ends at the pore
walls) have corresponding analogues in tadpole and manacle struc-
tures – Fig. 2.

In the Sections 2.1–2.4 we discuss this analogy in more detail.
FCA will be justified by comparing exact equations describing LCCC
of functionalized polymers and PCMs.

Let us start with the comparison of mono- and di-functional
chains with simple PCMs (tadpoles and manacles).

2.1. LCCC of functionalized macromolecules: main theoretical
results

A model used in the theories [5,25–27] of LCCC of function-
alized polymers (Fig. 2a) is a modification of the basic model,
described above. Apart from R and d, there is one more parameter
W = ı

(
e−�ε − 1

)
accounting for additional adsorption interaction

of a functional group. A small length-dimensional ı is an effec-
tive radius of interaction (assumed as being of order s), while ��
(expressed in units of kT)  accounts for the difference in the interac-
tion free energy of a terminal chain fragment and the repeating unit.
Parameter W is positive if the functionalized unit is more adsorptive
than the other ones. It is convenient to introduce a dimensionless
interaction parameter q [25,27]:

q = W

d
= ı

d

(
e−�ε − 1

)
(2.3)

According to the theories [5,25–27], at the CIP, the distribution
coefficient KLa of a mono-functional linear chain La (with a terminal
functional group, a) equals:

KLa ≡ K1 (qa) = 1 + qa (2.4)

An equation for KaLb of a linear di-functional, aLb,  having two
terminal functional groups (with the interaction parameters qa and
qb), is somewhat more complicated [27]:

KaLb = K2 (qa, qb, g) = 1 + qa + qb + qaqb × � (g) (2.5)

The function � (g) appearing in Eq. (2.5) is defined by Eq. (2.6);
this function is plotted in Fig. 3.

� (g) =
∞∑

k=−∞
e−(k�g)2 ≈

{(√
�g

)−1
, g < g0

1 , g > g0

(2.6)

where g0 ≈ �-0.5 ≈ 0.564.
The first term in both Eqs. (2.4) and (2.5) corresponds to chains

with no ends at pore walls. The second term in Eq. (2.4), as well as
two similar terms in Eq. (2.5), are due to mono- and di-functional
chains having one functional group near a wall; the last term in
Eq. (2.5) is relevant to di-functionals with both functional groups
contacting the walls simultaneously (these types of chain confor-
mations are depicted in Fig. 2a).
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