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a b s t r a c t

This paper demonstrates how the solutions to conventional radioactive decay equations can be derived
using results from matrix analysis. In particular, we draw on results for the matrix exponential function
when the matrix is triangular. By applying key theorems, the paper explains how the solutions to these
equations can be presented in algorithmic form and in terms of divided differences of the exponential
function. Furthermore, with little additional effort, the approach yields solutions to more general varia-
tions of these equations.
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1. Introduction

The production rates of a network of nuclides undergoing spon-
taneous decay is described by the simultaneous linear differential
equation system introduced by Bateman [1]. When nuclear reac-
tions are induced in a neutron flux, Rubinson [2] provided amodifi-
cation to include transformation by neutron absorption in addition
to spontaneous decay. Although this model and its solution are
well known through applying the methods of Laplace transforms,
integrating factors or matrix algebra, this paper shows that there
is much to be gained by taking an alternative, and perhaps more
natural, approach using the matrix exponential function.

Following a description of the decay chain differential equations
we introduce thematrix exponential function. The subsequent sec-
tions demonstrate the easy discovery of the Bateman solution and
how important extensions to the basic model may be evaluated
using this approach.

2. The decay chain equations

We begin with the description of the basic model as presented
by Amaku et al. [3]. A serial decay chain of n nuclides is one where
the ith nuclide of the chain decays to the (i + 1)th nuclide of
the chain. We denote the quantity of the ith nuclide at time t by
Ni(t) and its decay constant by λi (sec−1). If we allow for nuclei
immersed in a constant neutron flux φ (neutrons cm−2 sec−1) and
total neutron reaction cross section σi (cm2) for the ith nuclide,
then the differential equation system may be written as

N ′

1(t) = −κ1N1(t)
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N ′

2(t) = λ1N1(t) − κ2N2(t)

N ′

3(t) = λ2N2(t) − κ3N3(t)

...

N ′

n(t) = λn−1Nn−1(t) − κnNn(t),

(1)

where N ′

i (t) = dNi(t)/dt and κi = λi + φσi being the ith modified
decay constant. The initial conditions at t = 0 are Ni(0) = Ni0 for
i = 1, . . . , n. If we define branching ratios, rij, from the jth nuclide
to the ith nuclide (for j = 1, . . . , n − 1 and i = j + 1, . . . , n) and
denote partial decay constants by bij = rijλj (with

∑n
i=j+1rij = 1),

the system (1) is then extended as

N ′

1(t) = −κ1N1(t)

N ′

2(t) = b21N1(t) − κ2N2(t)

N ′

3(t) = b31N1(t) + b32N2(t) − κ3N3(t)

...

N ′

n(t) = bn1N1(t) + bn2N2(t) + · · · + bn,n−1Nn−1(t) − κnNn(t).

(2)

In matrix form, the equations in (2) can be written as⎡⎢⎢⎢⎢⎣
N ′

1(t)
N ′

2(t)
N ′

3(t)
...

N ′

n(t)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−κ1 0 0 . . . 0
b21 −κ2 0 . . . 0
b31 b32 −κ3 0
...

...

bn1 bn2 bn3 . . . bn,n−1 −κn

⎤⎥⎥⎥⎥⎦
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⎡⎢⎢⎢⎢⎣
N1(t)
N2(t)
N3(t)

...

Nn(t)

⎤⎥⎥⎥⎥⎦
or, with obvious notation, the differential equation system

N′(t) = AN(t). (3)

We denote the system’s initial conditions at t = 0 by N0 =

(N10,N20, . . . ,Nn0)T . (Throughout this paper, xT denotes the trans-
pose of x).

Pressyanov [4] provides a good description of the Laplace trans-
form approach to solving Eq. (1). Moral and Pacheco [5] and Amaku
et al. [3] provide the steps needed to apply the conventionalmatrix
algebra approach to solving, respectively, (1) and (3). In the follow-
ing sections we apply instead the matrix exponential function and
demonstrate how the approach lends itself to other specifications
of this decay chain model.

3. The matrix exponential function

Apostol [6] provides a helpful introduction to the development
of the matrix exponential function and its use in solving systems
of differential equations with constant coefficients.

For a real number t and fixed n × n matrix A, with typical
element aij, let Sm(t) denote the partial sum

Sm(t) = I + At +
1
2!

A2t2 +
1
3!

A3t3 + · · · +
1
m!

Amtm.

Then, subject to a suitable definition for the norm of a matrix,
e.g. ∥A∥ =

∑
i,j|aij|, it can be shown (see [6], Sec. 7.5) that the

sequence of matrices {S1(t), S2(t), . . .} has a limit for all t and all
fixed A. We define the limit of the sequence {S1(t), S2(t), . . .} to be
eAt . That is:

eAt =

∞∑
k=0

1
k!
Aktk. (4)

We state a few properties and consequences which are easily
established and will help with the exposition later in the paper:

• eA0 = I, since A0 = 0.
• Differentiating (4) with respect to t (term by term), we have

deAt

dt
=

d
dt

∞∑
k=0

1
k!
Aktk =

∞∑
k=1

1
(k − 1)!

Aktk−1

= A
∞∑
j=0

1
j!
Ajt j = AeAt .

• If A is a lower triangular matrix then Ak must also be a lower
triangular matrix (since the product of two lower triangular
matrices is itself a lower triangular matrix) and it follows
that eAt will be lower triangular.

• If A is a lower triangular matrix with ith diagonal entry αi
then Ak has ith diagonal entry αk

i and it follows that eAt will
have ith diagonal element eαit .

• Let F = eAt , then A and F commute (i.e., AF = FA), since Ak

and A commute.
• If matrices A and B (both of order n) commute then eAteBt =

e(A+B)t . To see this, expand both sides of this equation using
(4) and equate terms in tk. (See also [6], Sec. 7.8.)

• It follows, sinceAt andAs commute, that eAteAs = eA(t+s) and
setting s = −t we have eAte−At

= eA0 = I and so e−At is the
inverse of eAt .

4. Solving the decay equations

In this section, we use the matrix exponential function to solve
the system (3) and exploit its triangular form. We show how an
explicit expression for the general solution can be derived in an
economic manner. An earlier paper that applied this approach is
Attaya [7].

As (3) is a homogeneous system with constant coefficients, we
may write the unique solution to (3) as

N(t) = eAtN0. (5)

(See [6], Theorem 7.7.) Differentiating (5) with respect to t gives
N′(t) = AN(t) and noting (5) yields N(0) = N0 at t = 0 confirms
(5) as a solution to (3).

Although (5) provides an explicit formula, there still remains
the problem of actually computing the entries for the exponential
matrix eAt . Moler and Van Loan [8] assess the many approaches
to performing this calculation for a general fixed matrix A and is
an excellent review of the potential practical difficulties. Here, we
will exploit the advantages provided by the triangular form of the
matrix A in our case.

Denoting F = eAt and to have typical element fij, then we know,
as F is lower triangular, fij = 0 for i < j. We can therefore represent
the solution for (3) as:⎡⎢⎢⎢⎢⎣

N1(t)
N2(t)
N3(t)

...

Nn(t)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
f11 0 0 . . . 0 0
f21 f22 0 . . . 0 0
f31 f32 f33 0
...

...
. . .

. . .

fn1 fn2 fn3 . . . fn,n−1 fnn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
N10
N20
N30
...

Nn0

⎤⎥⎥⎥⎥⎦ .

We have that {−κ1, . . . ,−κn} are the diagonal entries for A.
Consequently, the diagonal entries for F are fii = e−κit for i =

1, . . . , n. Furthermore, as A and F commute, AF = FA. This matrix
equation provides us with sufficient information to solve for the
remaining fij entries. For instance, the first subdiagonal entries of
each side of AF = FA give

bi,i−1fi−1,i−1 − κifi,i−1 = bi,i−1fii − κi−1fi,i−1 (i = 2, . . . , n)

yielding

fi,i−1 =
bi,i−1(fii − fi−1,i−1)

κi−1 − κi
(i = 2, . . . , n).

Moving down to the next subdiagonal, we have

bi,i−2fi−2,i−2 + bi,i−1fi−1,i−2 − κifi,i−2

= bi,i−2fii + bi−1,i−2fi,i−1 − κi−2fi,i−2 (i = 3, . . . , n)

or

fi,i−2 =
bi,i−2(fii − fi−2,i−2)

κi−2 − κi
+

fi,i−1bi−1,i−2 − bi,i−1fi−1,i−2

κi−2 − κi

(i = 3, . . . , n).

Moving down once more, we have

bi,i−3fi−3,i−3 + bi,i−2fi−2,i−3 + bi,i−1fi−1,i−3 − κifi,i−3 =

bi−2,i−3fi,i−2 + bi−1,i−3fi,i−1 + bi,i−3fii − κi−3fi,i−3

(i = 4, . . . , n)
or

fi,i−3 =
bi,i−3(fii − fi−3,i−3)

κi−3 − κi
+

fi,i−2bi−2,i−3 − bi,i−2fi−2,i−3

κi−3 − κi

+
fi,i−1bi−1,i−3 − bi,i−1fi−1,i−3

κi−3 − κi

(i = 4, . . . , n)

. . . and so on.
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