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a b s t r a c t

Classical measurements of performances are typically based on linear scales. However, in analytical
chemistry a simple scale may be not sufficient to analyze the analytical performance appropriately. Here
partial order methodology can be helpful. Within the context described here, partial order analysis can
be seen as an ordinal analysis of data matrices, especially to simplify the relative comparisons of objects
due to their data profile (the ordered set of values an object have). Hence, partial order methodology
offers a unique possibility to evaluate analytical performance. In the present data as, e.g., provided by the
laboratories through interlaboratory comparisons or proficiency testings is used as an illustrative
example. However, the presented scheme is likewise applicable for comparison of analytical methods
or simply as a tool for optimization of an analytical method. The methodology can be applied without
presumptions or pretreatment of the analytical data provided in order to evaluate the analytical
performance taking into account all indicators simultaneously and thus elucidating a “distance” from the
true value. In the present illustrative example it is assumed that the laboratories analyze a given sample
several times and subsequently report the mean value, the standard deviation and the skewness, which
simultaneously are used for the evaluation of the analytical performance. The analyses lead to
information concerning (1) a partial ordering of the laboratories, subsequently, (2) a “distance” to the
Reference laboratory and (3) a classification due to the concept of “peculiar points”.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction – the need for several indicators

Evaluating analytical performance may be assessed, e.g., through
interlaboratory comparisons and/or proficiency testings or compar-
isons of analytical methods or through the optimization process of
an analytical method. In the following we will apply the analytical
performance of a series of laboratories as an illustrative example how
analytical performance advantageously can be evaluated beyond the
restrictions imposed by a single-quantity-approach such as the
evaluation by checking only the accuracy (see below). Participation
in interlaboratory comparisons or proficiency testings and a satisfying
result from these are typically a prerequisite for obtaining accredita-
tion to perform a given analysis.

Result of the single laboratory maybe expressed of the z-score (see
below) only, which measure of how “far away” the single analytical
result is from the accepted value, i.e., the z-score [1,2]. The z-score of

the reference laboratory by definition being 0 (Eq. (1)). Obviously, the
z-score does not as such tell the full story and other measures should
be considered simultaneously. These (in the present case three)
measures will a priori form a grid in the three-dimensional space
and laboratories can be represented as a point in the space spanned by
the three coordinates. The projection to each of these three coordi-
nates bears information of its own right and it seems to be careless to
aggregate the three quantities in order to obtain an easy to handle
scale for ranking purposes. Various approaches for aggregating the
indicators have been reported [3,4]. However, such aggregation of the
indicators may unequivocally lead to compensation effects where high
values in one indicator may compensate low values in another [5].

Taking all three indicators into account simultaneously is a bit
more complicated than the use of a single scalar as we are facing a
multi-indicator system (MIS). Partial order theory applied in multi-
indicator systems is also known as Hasse diagram technique (HDT)
[6,7] and appears in this connection as a highly advantageous tool.
The visual representation of a partial order can be performed by a so-
called Hasse diagram. In the Hasse diagram comparable objects are
connected by a sequence of lines [6] and the diagram is characterized
by its structure that comprises levels, chains and antichains (see
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below). An often heard criticism of partial order ranking approaches
is that the method is lacking of a unique or absolute ranking, i.e., the
presence of incomparabilities. In a Hasse diagram incomparabilities
are causing that the Hasse diagram (cf. Fig. 2) has not only a vertical
(ranking) but also a horizontal geometrical configuration. Hence,
applying partial ordering implies comparison among different
objects. The consequent application of this concept leads to figures,
which are known in algebra as (directed) graphs.

2. Theory and methods

2.1. Indicators

The z-score denotes the standard score [2] or accuracy [1,8] of
the measurements, which enables a comparison between two
scores from different normal distributions.

z¼ m�ma
� �

=sa ð1Þ
where m is the reported value from the laboratory and ma and sa
are the accepted value (mean) and standard deviation, respec-
tively, as generated by the Reference laboratory, i.e., the laboratory
assigned to perform the interlaboratory comparisons and profi-
ciency testings [9]. In other words: a Reference laboratory is by
definition considered as the “best”. Also the standard deviation of
the laboratory measurements is important to judge the laboratory
performance, i.e., the precision of the measurements [1]. Finally a
further possible factor to bring into play to elucidate the labora-
tory performance is the skewness of the distribution of the
laboratory measurements [10]. This factor (indicator) tells about
the shape of the distribution and thus to what extent the
measurements are in analytical or statistical control [11]. The
three parameters are all standard output from statistical treatment
of the results from a series of replicate measurements (vide infra)

Obviously these factors – or indicators – for evaluating laboratory
performance on an individual basis can be easily compared and thus
each of them then may constitute the basis for ranking of the
laboratories, i.e. the performance of the laboratory relative to each
other as well as to the Reference laboratory. As such this may
constitute an evaluation tool for selecting laboratories for specifics
task. However, only part of the story is told and the information basis
is obviously limited.

In the present study the absolute values of the z-score, |z|, and the
skewness, |skew|, together with the standard deviation, s, are applied
as indicators. The [0, 1] normalized indicators are called ri (i¼1, 2, 3)
and any possible triple of values of a certain laboratory is conse-
quently called r. Thus, each laboratory is characterized by a data
profile, i.e., an ordered set of indicator values (|z|,s,|skew|).

Generally indicators ri can be normalized to a [0, 1]-scale
(called rni) by

rni xð Þ ¼ ri xð Þ�ri minð Þ= ri max �ri minð Þ ð2Þ
where rimax and rimin being the maximum, minimum value with
respect to the objects. Here the indicators ri are assumed to be already
normalized and we consider r as the triple (r1, r2, r3)¼(normalized
z-score, normalized standard deviation, normalized skewness).

2.2. Partial order

2.2.1. Overview
In this paper the numerical aggregation for example by

calculating a composite indicator CI is avoided.

CI¼∑g1 � rni gi : weights; i¼ 1;…;3 ð3Þ
The alternative is based on partial order methodology. The

subject “Partial Order” is of increasing interest in the mathematical

field as well as in many other applied fields. Here a pretty simple
variant of partial order is applied to study MIS, according to a
recent paper by Bruggemann and Carlsen [12]. This methodology
can be applied, whenever a MIS and a data matrix are available
and a ranking is of interest. For example partial order was applied
in environmental sciences, in biology, in economy and social
sciences. Good overviews can be found in Refs. [7,13]. Partial
ordering can be considered as a non-parametric method as, in
contrast to standard multidimensional analyses no assumptions
about linearity or distribution of the indicators are made and are
necessary.

2.2.2. The basical equation of Hasse diagram technique
In Partial Ordering the only mathematical relation among the

objects is “r” [6,7,14]. The “r”-relation is the basis for a
comparison of laboratories and constitutes a graph. A laboratory
x is connected with laboratory y if and only if the relation xry
holds. The crucial question is, under which conditions it can be
claimed that xry. Here, a system is described by a series of
indicators rj, the MIS. A laboratory, x, characterized by the a set of
indicators rj(x), j¼1, …, m can be compared to another laboratory
y, characterized by the indicators rj(y), when

ri xð Þrri yð Þ f or all i¼ 1;…;m ð4Þ
Eq. (4) is a very hard and strict requirement for establishing a

comparison. It demands that all indicators of laboratory x should be
better (or at least equal) than those of laboratory y through
comparison of the single indicators, respectively. To be still a little
bit more technically: Let X be the group of laboratories studied, i.e.,
X¼{REF, lab1, lab2, …., lab20}, the laboratory labx will be ranked
higher than laboratory laby, i.e., labx4laby or still more condensed
x4y, if at least one of the indicator values for labx is higher than the
corresponding indicator value for laby and no indicator for labx is
lower than the corresponding indicator value for laby. However, if
rj(labx)4rj(laby) for some indicator j and ri(labx)ori(laby) for some
other indicator i, labx and labywill be called incomparable (notation:
labx:laby) expressing the mathematical contradiction due to con-
flicting indicator values. A set of mutual incomparable objects is
called an antichain. When all indicator values for labx are equal to the
corresponding indicator values for laby, i.e., rj(labx)¼rj(laby) for all j,
the two objects will have identical rank and will be considered as
equivalent, i.e., labx� laby.

Eq. (4) is the basic for the Hasse diagram technique (HDT) [6,7,14],
which is a special (statistically oriented part of partial order theory).
Hasse diagrams are visual representation of the partial order. In the
Hasse diagram comparable objects are connected by a sequence of
lines [14–17]. For construction of the Hasse diagram, a uniform
orientation of the indicators should be secured, i.e., high indicator
values correspond to “bad” objects and low values to “good” objects.
In Fig. 2 (Section 3) the Hasse diagram based on the data given in
Table 1 is shown. Thus, in the present case the higher a laboratory is
placed in the Hasse diagram the farther away from the performance
of the Reference laboratory it is.

2.2.3. Structure of a Hasse diagram
A Hasse diagram is characterized with it structure that com-

prises levels, chains and antichains (cf. Fig. 2).
Level: The horizontal arrangement of objects within a Hasse

diagram. The level structure gives a first approximation to a weak
order (i.e. tied ranks are not excluded: thus, for example in the
ordering of four objects aob¼doe there is a tie, i.e., the equivalence
of b and d with respect to the rank.) of the objects from “good”
(bottom) to “bad” (top). Unfortunately, this will often give rise to
many tied ranks as all objects in a level automatically will be
assigned identical ranks. Typically, it is desirable that the degree of
tied ranks should be as low as possible, i.e., there is a need for a linear

L. Carlsen et al. / Talanta 132 (2015) 285–293286



Download English Version:

https://daneshyari.com/en/article/1242019

Download Persian Version:

https://daneshyari.com/article/1242019

Daneshyari.com

https://daneshyari.com/en/article/1242019
https://daneshyari.com/article/1242019
https://daneshyari.com

