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a b s t r a c t

Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of
proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-
linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-
weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible
and rational variable selection. As optimized by a global stochastic optimization technique, particle
swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for
automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of
fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful
pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading
to improved performances in multiplex protein pattern unmixing compared with conventional SVM and
other exiting pattern unmixing methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Proteins are involved nearly every work in cells, and the gen-
ome of each living organism encodes a wide range of proteins.
Some proteins are made in all cells of an organism and some are
only made in particular cell types [1]. Accurate knowledge of
protein subcellular localizations is important for elucidating their
functions, understanding cellular processes as well as facilitating
the identification of the drugs [2–4]. These multiplex proteins
together with their dynamic features have attracted great interests
because of their potential unique biological functions [5]. Never-
theless, it is common for proteins to exhibit intricate spatial dis-
tributions between several subcellular locations. Approximately
60% of human proteins have been recognized localizing in multiple
organelles [6,7]. It is, thus, a hard and challenge task of

determining, describing or predicting of protein distribution pat-
terns within cells.

In earlier studies, the presence or absence of a specific protein
in a subcellular organelle was predicted based on the knowledge
of the biological role of proteins [8–10]. For example, Gene On-
tology [11], an available tool for the unification of biology, is in-
voked to roughly explain the place in cells where a gene product is
active [12], but it is unable to offer any further information about
the proteins in every organelle regarding their amount or dynamic
changes. Cell imaging techniques, including high-throughput
fluorescence microscopy, have enabled large-scale collection of
subcellular organelle images showing the distribution of fluores-
cently tagged proteins [13]. Relying on these fluorescence micro-
scope images, subcellular protein location determining are also
carried out via the examination by human experts, which has
became the most common method in this field [5,14]. However,
visual examination of multiplex proteins is not only quite labor
intensive, but such a subjective approach also easily results in
different interpretations from investigator to investigator. Besides,
it lacks applicable terms capable of describing subtle distribution
differences that proteins display.
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In a more objective manner, some efforts have been made in
developing automated analysis techniques to interpret fluores-
cence microscope images in terms of the subcellular protein dis-
tribution patterns [15,16]. Previous studies have created auto-
mated classifiers and have demonstrated they can identify the
patterns of all major subcellular locations with higher accuracy
than visual analysis [17–19]. Automated systems also have been
developed to learn what subcellular patterns are present in large
collections of images without prior knowledge of the possible
patterns and to quantify the amount of fluorescently tagged pro-
teins that the patterns contain based on object extraction, feature
calculation and object type learning [16]. Furthermore, recent
studies have reported machine-learning approaches for estimating
the amount of fluorescent signal in different subcellular organelles
without extensive hand-tuning of algorithms [13,20]. In these
studies, the mixing subcellular distribution patterns were ap-
proximately estimated by using single-location distribution pat-
terns of a protein. The single-location distribution patterns, treated
as fundamental patterns, were learned from the cell fluorescence
images and described the frequencies of interested protein at each
subcellular organelle [16]. Based on these fundamental patterns,
the estimation of protein mixing patterns was realized via per-
forming linear combinations of these fundamental patterns. In-
versely, the fundamental patterns of a protein can also be resolved
from its mixing patterns by solving linear equations. Although the
estimated patterns resolved using linear unmixing would not be
the real status of protein in subcelluar organelles, they still ap-
proximately informed the patterns of protein in an easily acces-
sible manner. The significant advantages of this approach are it is
cell type independent and requires only the acquisition of separate
training images of fluorescent markers for each subcellular orga-
nelle [13].

Considering non-linear machine learning techniques generally
have better performance in solving complex issues than linear
modeling ones, herein, a non-linear pattern unmixing method is
proposed based on variable-weighted support vector machine
(VW-SVM) [21] for the automated estimation of subcellular pro-
tein mixing patterns. SVM has been proofed to be a robust ma-
chine learning technique widely used in establishing both linear
and non-linear models [22]. Coupled with particle swarm opti-
mization (PSO) algorithm [23], VW-SVM was developed as a
parameter-free modeling technique which enables the construc-
tion of a rational and self adaptive prediction model according to
the performance of the total model [21]. Otherwise, rather than in
the previous study it supposed mixing patterns are the linear
combination of fundamental ones, in the present study it hy-
pothesizes that any pattern of protein distribution can be resolved
by a non-linear VW-SVM model trained using a data set made by
other patterns, mixing one, fundamental one or both of them,
thus, guaranteeing a more flexible strategy for unmixing of com-
plex protein patterns.

2. Dataset

To demonstrate the feasibility of the non-linear machine
learning method in protein pattern unmixing, VW-SVM as opti-
mized by PSO is applied to the estimation of the subcellular pro-
tein location patterns. The cell image dataset was created by
Murphy et al. using high-throughput automated microscopy [13].
It resulted in 64 images by labeling cells with varying mixtures of
fluorophore-tagged mitochondrial and lysosomal probes (Mito-
tracker and Lysotracker) indicating the proteins locating in mi-
tochondria and lysosomes. The image set is available at http://
murphylab.web.cmu.edu/data/.

For image processing and feature extraction, briefly, binary

images are first obtained by applying an automated threshold
method to distinguishing probe-containing from nonprobe-con-
taining pixels in all qualified images [13]. Then, each set of con-
nected above-threshold pixels, which defined an object, is iden-
tified and described using a set of 11 variables (SOF1) to char-
acterize the morphological and spatial properties of the object, as
proposed in previous studies [16]. After that, object type learning
is performed in two different methods for comparison. One is in-
dividual learning strategy (ILS), in which type learning is con-
ducted on each protein location pattern from training or test set
using K-means method. The value of k is set to be 11 in this
strategy [13]. The other one is a collective learning strategy (CLS),
in which type learning is performed on all the objects presenting
in the training images. Then, the objects found in a training set are
clustered using K-means to identify their types with the best value
of K accessed under the Akaike Information Criterion (AIC) [24,25].
For test set, each protein object in an image is assigned to the
cluster whose center was closest to it in the feature space. Based
on the identified K-object types, each image is represented as a
vector x¼(x1,…, xK) with xk (k¼1,…K) defines as the frequency of
kth-object type in that image. Taking into account that object SOF1
and the fluorescence intensity in an image also depicts important
features of that image, therefore, besides object frequencies, these
two sorts of image features, modified SOF1 and fluorescence in-
tensity are also used to constitute the variable set of each image in
the current study. Modified SOF1 values are obtained by average
the eleven SOF1 features of all objects in an image and fluores-
cence intensity is the amount of fluorescence an image contains.
Hence, for each image, it could be represented by a vector with
Kþ12 variables.

The Jackknife test [12] is deemed as one of the most objective
methods for assessing the performance of an algorithm. Therefore,
8-fold cross validation is adopted to demonstrate the performance
of non-linear VW-SVM in protein pattern unmixing. The average
results of 8-fold cross validation are reported.

3. Methods

3.1. Variable-weighted support vector machine (VW-SVM)

Support vector machine has been a widely data mining and
modeling technique in the past decades [26–29]. Our previous
study [21], automated data mining and modeling was realized in
VW-SVM as optimized using PSO, in which it proposed flexible
weighting of all variables rather than simply reserving or aban-
doning some variables during variable selection procedure con-
sidering that every variable in a dataset may contribute to a model
more or less. It has demonstrated that variable weighting treat-
ment is able to further greatly improve the performance of SVM
when solving a non-linear regression problem [30]. The basic
theory of VW-SVM is briefly interpreted as following.

Suppose X is a P� I matrix with P variables for I protein dis-
tribution patterns (images), and y is a vector representing the
corresponding dependent variable for the I patterns. Herein, yi is
the pattern fraction or the probe concentration in a target cellular
organelle for the Ith pattern. Contrasting with an ordinary SVM
model, where variables in X are considered as making the same
contribution to the regression model, in VW-SVM, X is left mul-
tiplied by a diagonal matrix diag(wa),

diagX w X 1aWa = ( ) ( )

wherewa is a P�1 variable weighting vector with all the elements
being non-negative values and diag(wa) is a P� P matrix whose
diagonals are the elements of wa. Consequently, VW-SVMmodel is
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