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Surface oceanCO2 fugacity (fCO2) often exhibits largefluctuations and heterogeneity because ofmultiple control-
ling factors that pose a challenge for trend analysis, especially in the oceanmargins.We propose a new statistical
approach, Generalized Additive Mixed Modeling (GAMM), to interpret oceanic fCO2 data in two ocean margins
(Japan and Europe) and two open ocean areas. The latter included areas near the Hawaii Ocean Time-series
(HOT) and the Bermuda Atlantic Time-series (BATS). This method utilizes day of year, sea surface salinity
(SSS), sea surface temperature (SST), and sampling date as predictors. Using this method, wewere able to derive
multidecadal fCO2 trends with both improved precision and greater robustness to data gaps compared to an
existing deseasonalization method used in the open ocean. The fCO2 trend derived by our method for the Japa-
nese margin (1992–2013), the European margin (1989–2014), and the open ocean near HOT (1983–2013)
were 2.1 ± 0.6, 1.9 ± 0.7, and 2.0 ± 0.5 μatm year−1 (mean ± standard deviation of multiple 1° × 1° grids in
margins and 5° × 5° grids in open ocean), respectively, and the fCO2 trends were all close to the atmosphere
CO2 trend (1.7–1.9 μatm year−1). Our analysis produced generally smaller standard errors (paired t-test,
p ≪ 0.001) than those obtained using the existing method based on the same dataset. In addition, our method
was less sensitive to data gaps compared to this existingmethod. However, for regularly spaced fCO2 times-series
data, for example, discrete bottle data collected in the BATS station in 1991–2011, this method was not advanta-
geous over the existing method (1.9 ± 0.2 vs. 2.0 ± 0.2 μatm year−1). To test the broader applicability of this
method, we compared fCO2 trends in the Southern Ocean derived using our method with those from a recently
reportedMarkov Chain Monte Carlo method and found no significant difference between the two sets of values.
Therefore, we recommend the application of our method in interpreting fCO2 data in different oceanic
environments.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The concentration of carbon dioxide (CO2) in the atmosphere has in-
creased from ~280 ppm in preindustrial era to ~399 ppm (annual
mean) in 2015 (http://www.esrl.noaa.gov/gmd/ccgg/trends/). If CO2

emission continues under the “business-as-usual” scenario, atmospher-
ic CO2 level is expected to exceed 900 ppm by the end of this century
(Collins et al., 2013).

The ocean serves as a natural sink (1.4–2.9 Pg C year−1) for atmo-
spheric CO2 (Khatiwala et al., 2009; Landschützer et al., 2014; Sabine
et al., 2004; Takahashi et al., 2009). It takes up CO2 primarily through
air-sea gas exchange, which is a function of both physical conditions
(wind speed, salinity, and temperature) and the thermodynamic gradi-
ent between seawater and the atmosphere (ΔfCO2 = fCO2_ocean −
fCO2_air). Surface ocean CO2 fugacity (fCO2) is controlled by dissolved

inorganic carbon (DIC) concentration, total alkalinity (TA), sea surface
salinity (SSS), and sea surface temperature (SST) (Takahashi et al.,
1993). Both TA and DIC can also be affected by biogeochemical process-
es, including respiration, photosynthesis, and carbonate precipitation
and dissolution (Zeebe andWolf-Gladrow, 2001). Note in the literature
both fCO2 and pCO2 (partial pressure of CO2) are often used inter-
changeably. Given that these two parameters are very close to each
other (Δ b 0.4% (Zeebe andWolf-Gladrow, 2001)) under normal seawa-
ter conditions, trend analysis based on either datasetwould produce es-
sentially the same results.

The ocean's uptake of CO2 has reduced atmospheric buildup of this
greenhouse gas and damped associated climate changes. However,
CO2 absorption has also reduced the saturation state of calcium carbon-
ate, known as “ocean acidification” (Doney et al., 2009;Hoegh-Guldberg
et al., 2007; Orr et al., 2005), which could hinder carbonate formation in
marine organisms (e.g., corals, marine plankton, coralline algae, and
shellfish) (Kleypas et al., 1999; Orr et al., 2005;Waldbusser et al., 2015).

The change rate of oceanic fCO2 relative to that in the atmosphere
provides information on how the strength of the ocean as either a CO2
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sink or source evolves over time. For example, a region with an oceanic
fCO2 increase rate higher than the atmospheric rate can be interpreted
as a decreasing sink or an increasing source dependingon the initial sea-
water fCO2 relative to atmospheric fCO2. Conversely, an oceanic fCO2 in-
crease rate less than the atmospheric rate can be interpreted as an
increasing sink (or a decreasing source) (Landschützer et al., 2014;
Landschützer et al., 2015; Lenton et al., 2012; Majkut et al., 2014). On
the other hand, because of high primary productivity in the oceanmar-
gins (Liu et al., 2010), knowledge on the fCO2 changes there is essential
for understanding its role in global carbon cycle.

Getting a more precise fCO2 trend is crucial to understanding the
evolution of carbon sink/source in difference areas of the ocean. In the
literature, however, there is no universal method in calculating the
fCO2 trend in surface seawater. The simplest approach is a linear least
square regression using observed data. For example, Dore et al. (2009)
directly applied a linear regression using observed fCO2 data in waters
at the Hawaii Ocean Time-series (HOT) and found that the trend in
the surface ocean is 1.9 ± 0.2 μatm year−1. To avoid biases caused by
temporal weighting, some researchers chose the observed data in only
selected months for their calculations. For example, Midorikawa et al.
(2010) reported that the fCO2 trend in the western North Pacific
(1983–2007) is 1.58 ± 0.12 μatm year−1 in winter and 1.37 ±
0.33 μatm year−1 in summer, and neither trend is significantly different
from their respective air fCO2 trends (1.65±0.05 μatm year−1 inwinter
and 1.54± 0.08 μatm year−1 in summer). Similarly, tominimize the bi-
ological effects on data interpretation in the Iceland Sea, Olafsson et al.
(2009) only selected the first 67 days (presumably with little biological
production) of the sampled years (1985–2008) to calculate fCO2 trend,
then with the aid of multivariate linear regression (y =
a × time + b × Temp + c), they found that the fCO2 trend is 2.1 ±
0.2 μatm year−1.

The most commonly used approaches generally obtain linear trends
after various deseasonalization techniques. For example, the fCO2 trend
analysis from 1983 to 2010 in Bermuda Atlantic Time-series (BATS)was
performed using both raw data and deseasonalized data (Bates et al.,
2012). The rate is 1.8 ± 0.1 μatm year−1 using the deseasonalized
data, but 1.6 ± 0.2 μatm year−1 using the raw data. This latter trend
may be biased due to more frequent sampling in spring, thus Bates et
al. (2012) recommended the deseasonalization method. To fit the sea-
sonal cycle in the European Station for Time series in the ocean
(ESTOC) near the Canary Islands, Santana-Casiano et al. (2007) used
harmonic functions to decompose the time series into a trend, seasonal
variations and errors, and serial correlation was modeled using a sec-
ond-order autoregressive process. They found that the fCO2 trend
from1995 to 2004 is 1.6 ± 0.4 μatm year−1. In another study, Schuster
et al. (2009) fitted a harmonic function in the form of y =
a + b × t + c × cos(2πt + d) in the North Atlantic to calculate the
fCO2 trend, where t is the year lapse since an arbitrarily defined refer-
ence year, and b is the fCO2 trend in μatm year−1. Their results sug-
gested that sea-surface fCO2 has closely followed atmospheric fCO2 in
the subtropical regions. McKinley et al. (2011) and Fay and McKinley
(2013) also adopted this harmonic function. They found that the fCO2

trend in the open ocean is sensitive to the chosen start and end years,
resulting from climatic oscillations such as El Niño/Southern Oscillation,
North Atlantic Oscillation. However, these oscillation signals would fade
away as timescales increase (i.e., 25 years), and the fCO2 trend is parallel
to the atmospheric trend (Fay and McKinley, 2013; McKinley et al.,
2011).

Takahashi et al. (2009) proposed a simple yet effective
deseasonalization method and used it to obtain global surface pCO2 cli-
matology. In their study, all historical data from regularly spaced “grids”
(latitude × longitude of either 4° × 5° or 5° × 10°) were used to obtain
the rate in each grid. First, seasonal changes were calculated on the
basis of the monthly mean values computed from a 4-year subsample
of the entire time series. Then pCO2 values formonthswith nomeasure-
ments were estimated by a linear interpolation using two adjacent

monthlymeans. The difference between amonthlymean and the annu-
al mean represents the correction to be applied to deseasonalize the
monthly mean. Finally, the deseasonalized monthly mean values are
regressed against time (year) using least square method to obtain the
mean rate of change (Lenton et al., 2012; Takahashi et al., 2009).
Using their method, surface water pCO2 in the North Atlantic, North
and South Pacific and Southern Oceans increases at a mean rate of
1.5 μatm year−1 from 1970 to 2007 (Takahashi et al., 2009). Overall, dif-
ferent independent studies suggested that surface fCO2 trend in the
open ocean has increased more or less the same as the atmospheric
fCO2 has. These trends indicate that the driving force for air-sea CO2

gas exchange has not changed significantly over the last three decades
(Bates et al., 2012).

Recently, Majkut et al. (2014) developed a Markov Chain Monte
Carlo (MCMC) method to calculate long-time pCO2 trends in the open
ocean. They found that the pCO2 trend in the Southern Ocean is 1.4 ±
0.5 μatm year−1 (based on the Lamont-Doherty Earth Observatory
LDEO V2010 database) in the 1995–2008 period, and they suggested a
global increase in the CO2 uptake of 0.4±0.1 Pg C year−1 decade−1, be-
cause surface pCO2 is increasing more slowly than the atmospheric
value (but not significantly different from the latter). This method re-
sulted a smaller value than linear regression method (2.2 ±
0.2 μatm year−1) reported in Lenton et al. (2012) based on the same
dataset. Using a neural network approach, Landschützer et al. (2015) re-
ported theweakening carbon sink trend in the Southern ocean (south of
35°S) stopped around 2002 and the carbon sink there increasing from
~0.6 Pg C year−1 in 2002 to ~1.2 Pg C year−1 in 2011.

One of the assumptions required for inference with regression
models is that residuals have constant variance throughout the range
of the predictors and the fitted values (“homoscedasticity”). Unfortu-
nately, in most cases this statistical test was not performed or explicitly
demonstrated, even in the sophisticated models published recently, for
example, the MCMC approach (Majkut et al., 2014) or the neural net-
work approach (Landschützer et al., 2013; Landschützer et al., 2015).
Given the spatial heterogeneity of biogeochemical reactions inmarginal
areas, which are heavily modulated by terrestrial influences, biological
activities, and physical processes (such as upwelling) (Liu et al., 2010),
it is unknown whether the above deseasonalization method can be
used in these areas, where the cyclic (or seasonal) behavior may not
be as stable as that in the open sea (Cai, 2011; Liu et al., 2010). The as-
sumption of homoscedasticity is not necessarily met because of hetero-
geneity of the marginal ocean and large fCO2 fluctuations. Violation of
this assumption suggests that linear least squares may not necessarily
result in the best unbiased estimates of model parameters. Therefore,
the regression analysis obtained from heteroscedastic variables could
produce inaccurate standard errors, too large for some values and too
small in others, and potentially biased regression coefficients.

In this work, we used a statistical approach that can fit the seasonal
cycle more precisely and reduce the impact of heteroscedasticity on the
calculated trend, and we compared results from ourmethod with those
from the Takahashi method (hereafter T0) that effectively generated
open ocean pCO2 climatology (Takahashi et al., 2009). We also com-
pared fCO2 trend derived using our method with recently reported re-
sults in the Southern Ocean using the MCMC method to test a broader
applicability of our method.

2. Method

2.1. Data

We chose two marginal areas and two open ocean areas in this
study. The two marginal areas include the northwestern North Pacific
margin (east of Japan, 28–45°N, 130–150°E) and northeasternNorth At-
lantic offshore Europe (44–50°N, 3–14°W). The two open ocean areas
are near the two time series stations, HOT (10–30°N, 140–165°W) and
BATS (31°40′N, 64°10′W), respectively. The grid size for our model
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