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Polymeric liposomes (denoted as ILs-polysomes) are a biocompatible and conductive nanomaterial, which was
first utilised as the electrode material for immobilising and biosensing redox enzyme horseradish peroxide
(HRP). The morphology and surface property of IL-polysomes was characterised and systematically compared
with unpolymerised ionic liquid based liposomes (denoted as ILs-liposomes). Differing from IL-liposomes, IL-
polysomes preserves their original morphology and bilayer membrane structure on glassy carbon (GC)
electrodes due to the cross-linking of polymerised lipids, thus exhibiting excellent stability and specific
biocompability. Because of the existence of imidazolium ionic liquid moieties on the outer surface, IL-
polysomes displays a positive charge in aqueous solution, leading to oppositely charged HRP self-assembling
onto the vesicles to form HRP/IL-polysomes/PVA/GC electrodes. Owing to the combined merits of ILs and lipo-
somes, electron transfer between HRP-FeIII/FeII redox couples of immobilised enzymes and GC electrodes can
be achieved. Therefore, HRP/IL-polysomes/PVA/GC electrodes exhibited good electrocatalytic performance
toward the electrocatalysis of H2O2. Accordingly, IL-polysomes could act as an efficient charged platform for
the self-assembled redox enzymes to realise direct electrochemistry. IL-polysomes have a promising application
in the fabrication of third-generation electrochemical biosensors.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

There has been increased interest in the fabrication of an enzyme
electrode to achieve direct electrochemistry, which can be then poten-
tially utilised for the construction of novel electrochemical biosensors,
biofuel cells and enzymatic reactors [1–4]. Moreover, the research into
the direct electron transfer (DET) of redox enzymes has also attracted
considerable attention for illustrating the electron transfer mechanism
of biological systems [5–8]. Unfortunately, it is still a great challenge to
achieve the DET for most redox enzymes on conventional electrodes
due to their deeply buried electroactive sites and the unfavourable ori-
entations of enzymes at electrodes [9,10]. Recently, it has been found
that the proper use of conductive and biocompatible nanomaterials in
the construction of enzyme electrodes is crucial to keep enzymatic
bioactivities and promote direct electrochemistry [11–13].

As a well-known biomimetic nanomaterial, liposomes, which have a
supramolecular assembly composed of an amphiphilic bilayer enclosing
an aqueous interior volume, have attracted intensive interest for various

biological applications, especially in the field of electrochemical biosen-
sors [14–16]. It has been proven that the unique bilayer membranes
of liposomes, which are similar to biological cell membranes, can pro-
vide a biocompatible environment to stabilise the conformation of
immobilised enzymes [17]. Hence, prepared liposomes based enzymatic
biosensors exhibit good analytical performance. However, liposomes
also suffer the major drawback of limited physical stability in working
environments [18,19]. To be specific, liposomes are prone to fusion
with solid surfaces or other bio-substances. The inherent instability of li-
posomes not only leads to damaging their unique bilayer membrane
and morphology, but also destroys the specific biocompability of the
vesicles, thus further affecting the performance of the biosensors [20].
For this reason, many researchers are making great efforts to improve
the stability of liposomes [21–23]. The introduction of covalent interac-
tion between self-assembled lipids has been found to be an efficient
strategy to form robust liposomes [24–26]. For instance, the lipids can
be functionalised with polymerisable C=C double bond. Cross-linking
modified amphiphiles after the formation of vesicles via polymerisation
efficiently fixes the unique shape and structure of supramolecular as-
sembles, thus endowing the liposomes with remarkably high physical
stability [27–30]. Moreover, besides the polymerisable moieties intro-
duced to improve the liposomal stability, it is desirable to tag other
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specific chemical functionalities onto lipids to enhance biosensor
performance [31].

Being a kind of organic salt composed of an organic cation and
various anions, ionic liquids (ILs) have attracted a lot of attention in
redox enzymes direct electrochemistry because of their remarkable
properties, especially good conductivity [32]. However, the liquid char-
acter of ILs at room temperature presents some difficult drawbacks,
such as poor processability and the need for encapsulation due to possi-
ble leakage [33]. Based on this viewpoint, the concept of supported ILs
(SILs) was developed to improve the applicability of ILs in various
biosensors [34]. After the integration of ILs with other substrates via
surface modification or polymerisation, the resulting non-liquid state
SILs can present the unique properties of ILs together with the intrinsic
properties of substrates [35]. Using this design concept, biocompatible
SILs have also been fabricated using liposomes as the supportingmatrix.
For instance, Garcia et al. established a novel IL based polymerised lipo-
some (ILs-polysomes) via the polymerisation of self-assembled IL
modified lipids [36,37]. As a novel vesicle, IL-polysomes not only exhibit
the enhanced physical stability of liposomes, they also make
transforming the existing state of ILs from fluid to solidified
nanomaterial a feasible process. Moreover, the assembly combines the
major advantages of the two components, which are biocompability of
liposomes and conductivity of ILs. Therefore, IL-polysomes may open
up new opportunities for the development of electrochemical biosen-
sors and bioelectronics. However, to the best of our knowledge, there
is no report on the introduction of such multi-functionalised liposomes
in the field of biosensors.

In this research, we firstly associated the IL-polysomes with a redox
enzyme, horseradish peroxidase (HRP) to construct an integrated
modified HRP/IL-polysomes/PVA/GC electrode. In order to illustrate
the structural features of IL-polysomes, unpolymerised ionic liquid
based liposomes (ILs-liposomes) were investigated as an analogous
electrode material. Compared with IL-liposomes, IL-polysomes exhibit-
ed excellent stability maintaining their original morphology and bilayer
membrane structure on GC electrodes. Moreover, HRP/IL-polysomes/
PVA/GC electrodes also exhibited good HRP electron transfer properties
and displayed good performance toward the electrocatalysis of H2O2,
such as wide linear range, good reproducibility and long-term stability.

2. Experimental section

2.1. Chemicals

Horseradish peroxide (HRP) from horseradish and potassium
persulfate were purchased from Sinopharm Chemical Reagent Co Ltd.
2-methylimidazole and 11-bromoundecene were purchased from J&K
Scientific Ltd. All chemicals were of analytical grade and used without
further purification. All solutions were prepared using Milli-Q purified
water (N18.0 MQ) sterilised at high temperature.

2.2. Material characterisation

Electrochemical measurements were performed at room tempera-
ture using a BAS100B workstation. The measurements were based on
a three-electrode system with the as-prepared modified electrode as
the working electrode, a platinum wire as the counter electrode, and a
saturated Ag/AgCl electrode as the reference electrode. Without special
statement, 0.1 M pH 7.0 PBS was used as the electrolyte solution in all
experiments. The buffer solutionwas purgedwith highly purified nitro-
gen for at least 30 min and a nitrogen atmosphere environment was
kept during all electrochemical measurements.

UV–vis experiments were performed with UV-2100S spectropho-
tometer (Shimadzu). The FTIR spectra of samples in KBr pellets were re-
corded on a PerkinElmer instrument. The morphologies of various
liposomes were observed utilising a Hitachi model H-800 transmission
electron microscope (TEM) operated at an accelerating voltage of

100 kV and a scanning electron microscope (SEM, JEOL JSM-7400F)
operating at 5 kV. For the SEM characterisation, the samples were pre-
pared by casting on aluminium foil. The dynamic light scattering
(DLS) and Zeta potential data of various liposomes were collected by
using a Zetasizer Nano-ZS particle analyser (Malvern Corp, England).

2.3. Preparation of ionic liquid modified lipid N,N′-bis(10-undecenyl)-2-
methylimidazolium bromide

The ionic liquid modified lipid N,N′-bis(10-undecenyl)-2-
methylimidazolium bromide was prepared according to the reported
method with a slight modification [36]. Typically, 11-bromoundecene
(24.4 mmoL, 5.68 g), 2-methylimidazole (12.2 mmoL, 1.0 g) and
triethylamine (14.6 mmoL, 1.48 g) were added to 100mL of dried tolu-
ene. The mixture was then heated to 90 °C and constantly stirred for
48 h. After cooling to room temperature, the toluene was evaporated
from the dispersion and the resulting oil product was purified by a
recrystallisation procedure in acetone to form a white powder, which
was the ionic liquid modified lipid.

2.4. Preparation of IL-liposomes and IL-polysomes

The prepared ionic liquid modified lipid (0.16 mmoL, 0.062 g) was
dissolved in water (40 mL) and stirred continuously for 1 hour to
form IL-liposomes via self-assembly.

Potassium persulfate (24 mg) was added to the solution of IL-
liposomes. The solution was then purged with highly purified nitrogen
for at least 30 min. Afterwards, the mixture was heated to 80 °C and
stirred constantly for 24 h for polymerisation. According to the reported
literature, the percentage of polymerisation for monomer is about
72% [36]. After the thermal polymerisation, the resultingdispersion con-
taining IL-polysomes was subsequently cooled to room temperature,
centrifuged and lyophilised. The IL-polysomes white powder obtained
was further re-dispersed in water. The final concentration of the total
lipids of IL-polysomes aqueous solution was maintained at 0.16 mM,
which was the same as that of IL-liposomes aqueous solution.

2.5. Fabrication of various modified electrodes

Prior to use, glassy carbon (GC) electrodes with a diameter of 3 mm
were polished on a polishing cloth with 1.0, 0.3, 0.05 μm alumina pow-
der respectively and rinsedwith deionisedwater followed by sonicating
in acetone, ethanol and deionised water successively. Then the
electrodes were dried with a purified nitrogen stream.

IL-polysomes/PVA/GC electrodes were prepared by a simple casting
method. Firstly, 7 μL IL-polysomes aqueous dispersionwas cast onto the
GC electrode. Thereupon a beaker was used to cover the electrode so
that water could evaporate slowly in air and a uniform film electrode
formed. Then the prepared IL-polysomes/PVA/GC electrode was im-
mersed into 0.10 M pH 9.7 phosphate buffer solution (PBS) containing
5 mg mL−1 HRP for 12 h to construct the enzyme electrode. The modi-
fied electrode was rinsed with deionised water to remove the excess
HRP. Polyvinyl alcohol (PVA) sol (3%, 10 μL) was then added for encap-
sulation to construct HRP/IL-polysomes/PVA/GC electrode. The dried
HRP/IL-polysomes/PVA/GC electrode was stored at 4 °C in a refrigerator
when not in use.

For comparison, IL-liposomes/PVA/GC and HRP/IL-liposomes/PVA/
GC electrodes were prepared with the same procedures as described
above.

3. Results and discussion

3.1. Fabrication of HRP/IL-polysomes/PVA/GC electrodes

The fabrication of HRP/IL-polysomes/PVA/GC electrodes is shown in
Schematic 1. As illustrated, the hydrophilic and hydrophobic parts,
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