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a b s t r a c t

Nuclear fusion is a nuclear reaction in which two or more atomic nuclei (such as a

deuteriumetritium) come very close and then collide at a very high speed and join to form

a new high energy nucleus (Helium). Determination of accurate plasma horizontal position

during plasma discharge is essential to transport it to a control system based on feedback.

The solutions of Grad-Shafranov equation (GSE) analytically can be used for theoretical

studies of plasma equilibrium, transport and magneto hydrodynamic stability. Here we

have presented specific choices for source functions, kinetic pressure and poloidal plasma

current, to be quadratic in poloidal magnetic flux and derive an analytical solution for

Grad-Shafranov equation. With applying this solution to NSTX tokamak, we calculated

poloidal magnetic flux, toroidal current density and normalized pressure profiles for this

tokamak. Toroidal and poloidal flows can considerably change the equilibrium parameters

of tokamak. These effects on the equilibrium of tokamak plasmas are numerically inves-

tigated using the code FLOW. As a comparative approach to equilibrium problem, the code

is used to model equilibrium of NSTX tokamak for case pure toroidal flow. Comparison of

the results of these two methods for NSTX tokamak shows good agreement between two

and that our analytical solution can be served as good benchmark against the equilibrium

code FLOW.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

For stationary and ideally conducting plasmas, magneto hy-

drodynamics (MHD) equations plus Maxwell's equations

reduce to the two-dimensional, nonlinear, elliptic partial dif-

ferential equation commonly referred to as the Grad-

Shafranov equation (GSE):
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where j4 is the toroidal current density, the stream function j

is the poloidalmagnetic flux per radian, F ¼ RB4 ¼ m0IpolðjÞ
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Ipol is the poloidal current, p'ðjÞ ¼ dp
dj and FF'ðjÞ ¼

d

�
1
2F

2

�
dj are

arbitrary functions of j. In toroidally confined plasma, the

Grad-Shafranov equation, in general, a nonlinear partial dif-

ferential equation, describes the hydro magnetic equilibrium

of the system. The solution of the GS equation provides the

magnetic field, the current density, and the kinetic pressure

inside axisymmetric plasma in hydro magnetic equilibrium.
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Having analytical solutions to this equation is convenient to

configure physical equilibria as a basis for theoretical studies

of transport, waves and stability. Also they can be served as

good benchmarks for testing numerical MHD equilibrium

codes. The GS equation is an elliptic partial differential

equation (PDE) for the poloidal magnetic flux j that labels the

magnetic surfaces in axisymmetric plasma equilibrium. The

equation contains two arbitrary functions p(j) and F(j) that

specify the dependence of the kinetic pressure and the

poloidal plasma current on the magnetic flux j [1]. Many

natural phenomena are described by systems of nonlinear

PDE's, which are difficult to be solved analytically, as long as a

general theory for completely solving nonlinear PDE's is not

yet available. The simplest analytical solution to the inho-

mogeneous GSE is the well known Solov'ev equilibrium [2e10]

and corresponds to source functions (p and F) linear in Ref. j.

Equilibrium of this type has been extensively used for equi-

librium, transport and stability studies. However the Solov'ev
equilibrium solutions are over constrained in shape or in

poloidal beta (plasma current). From the same Solov'ev equi-

librium case, by expanding the solution of the homogeneous

equations in a polynomial form in r (of fourth degree) and z (of

second degree) and assuming up/down symmetry, it is

possible to describe the plasma shape by four parameters [3].

By using particular source functions for the GSE, it is found a

class of exact analytical solutions [4,5,11e20]. Also, it is pre-

sented a new family of solutions where the plasma pressure is

linear in Refs. j, while the squared poloidal current has both, a

quadratic and a linear j term [21e27]. An exact solution of the

large-aspect ratio approximation with an additional assump-

tion of a simple relation between the magnetic flux and the

current density was constructed [28e30]. Analytical equilib-

rium solutions for tokamak plasmas are difficult to find since

the equations governing the equilibrium are highly nonlinear.

Therefore numerical solutions are always useful. Among

those, the FLOW code is developed for the study of axisym-

metric tokamak equilibrium in the presence of toroidal and

poloidal flow for NSTX tokamak [8]. FLOW was originally

designed for spherical tokamaks. It has been repeatedly

observed in several devices that when the plasma rotates

either toroidally or poloidally, both the energy transport as

well as the macroscopic stability improves significantly

(the plasma rotation can be either spontaneous or driven

by neutral beam injection or radio frequency heating). These

effects on the equilibrium of tokamak plasmas are numeri-

cally investigated using the code FLOW. FLOW solves the

GS-Bernoulli system of equations with a multi grid approach

including finite pressure anisotropy. The code input requires

the assignment of a set of free functions of the poloidal

magnetic flux J, which depend on the so called closure

equation governing the temperature(s) or entropy. Though,

FLOW can solve the equilibrium equation with arbitrary flow

[31e34]. In this paper, in Section Special analytical solution

to the GSE we have represented the special analytic solution

for GS equation using specific choices for the free functions

(p and F). It is done with determining the finite number

of unknown expansion coefficients in the three term solution.

Then we apply the results to NSTX tokamak. In Section

Study of equilibrium by FLOW code, as a comparative

approach to equilibrium problem for NSTX tokamak, we have

showed the results of a numerical study carried out with the

equilibrium code FLOW developed to study fixed boundary

equilibria with toroidal flows. Following this section, a brief

comparison between these two approaches is presented. In

Section Study of equilibrium by FLOW code we briefly discuss

about results.

Special analytical solution to the GSE

The magnetic field is related to the poloidal flux J by:

B4 ¼ FðJÞ
R

; Bp ¼ VJ� e4
R

; (2)

where B4 and Bp are toroidal and poloidal magnetic fields. We

choose the free functions p(J) and F(J) to be quadratic in Ref.

J [9]:
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Here Jaxis, paxis and baxis are constants related to the values of

J, p and F on axis and R0 and B0 are the major radius and

vacuum toroidal field at the geometric center of the plasma.

With these choices and specific normalization, the GS equa-

tion reduces to:
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We used these normalizations: J ¼ Jaxisj;
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. The solution of Eq. (4) is found by separation of

variables:

j ¼
X
m

XmðrÞYmðyÞ; (5)

where x ¼ �irεffiffi
a

p . Solution of the Ym equation for an up/down

symmetric configuration (like NSTX) is given by:

d2Ym

dy2
þ k2

mYmðyÞ ¼ 0; YmðyÞ ¼ cosðkmyÞ; (6)

where km is the mth separation constant, which can be real or

imaginary and we should determine it. The Xm(r) equation

reduces to:

d2Xm

dr2
þ
�
� 1
4
þ lm

r

�
Xm ¼ 0; (7)

with lm ¼ �i g�k2m
4ε

ffiffi
a

p and the solutions of Xm(r) are Whittaker

functions [10]. The solution of Xm(r) is given by:

XmðrÞ ¼ Im½amWlm ;mðrÞ þ bmMlm ;mðrÞ�: (8)

The am and bm are unknown expansion coefficients that

must be determined. Both r and lm are purely imaginary

quantities while Xm must be purely real, then we only keep

imaginary parts of Whittaker functions. For our model the

Whittaker parameter is m ¼ 1
2. Withmaintaining three terms in

the summation of j, we have:
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