Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

Doping supervalent rare earth ion in LiFePO₄/C through hydrothermal method

Yan Xu^{a,b,c}, Minshou Zhao^{a,b}, Bin Sun^a

^a Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China

^b State Key Laboratory of Metastable Material Science and Technology, Yanshan University, Qinhuangdao 066004, China

^c China University of Geosciences Great Wall College, Baoding 071000, China

ARTICLE INFO

Article history: Received 23 December 2015 Received in revised form 7 April 2016 Accepted 9 April 2016 Available online 3 May 2016

Keywords: Hydrothermal method Lithium-ion battery Rare earth ion-doped

ABSTRACT

Hydrothermal synthesized LiFePO₄/C and LiFe_{0.95}M_{0.05}PO₄/C (M = Sm, Eu, Yb) are studied in this paper. The samples are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis and Brunauer–Emmett–Teller (BET). The electrochemical performance is evaluated via galvanostatic charge–discharge, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The hydrothermal synthesized particles are nano scale level. The results show that the first discharge capacity of the as-prepared LiFePO₄/C and LiFe_{0.95}M_{0.05}PO₄/C (M = Sm, Eu, Yb) is 109.4 mAh/g, 153.6 mAh/g, 144.0 mAh/g and 160.7 mAh/g at 0.2 C, respectively, and reduces to 65.1 mAh/g, 147.7 mAh/g, 141.3 mAh/g and 152.6 mAh/g after 20 cycles, respectively. The specific surface area of LiFePO₄/C and LiFe_{0.95}M_{0.05}PO₄/C (M = Sm, Eu, Yb) is 18.3 m²/g, 25.2 m²/g, 21.5 m²/g and 25.4 m²/g, respectively. The exchange current density for LiFe_{0.95}M_{0.05}PO₄/C (M = Sm, Eu, Yb) composite is 121 mA·g⁻¹, 89.8 mA·g⁻¹, 138.8 mA·g⁻¹, respectively, which is much larger than that for LiFePO₄/C, 12.5 mA·g⁻¹. The result of cyclic volt-ammetry indicates that the difference between anode peak potential and cathode peak potential reduces and the reversibility of electrochemical reaction is enhanced at doped electrode materials. The electrochemical performances are apparently improved due to doping supervalent rare earth ion in LiFePO₄/C.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Lithium battery plays a very important role in power system, especially in electric vehicle (EV) and hybrid electric vehicle (HEV) application [1,2]. The olivine structure LiFePO₄ is considered to be one of the most promising battery cathode materials [3,4]. It is expected that LiFePO₄ could replace the commercial LiCoO₂ as it has many advantages, such as low cost, low toxicity, high specific capacity and environmentally friendly [5,6]. Sylvain Franger investigated the influences of different synthesis routes on physico-chemical properties of LiFePO₄ [6]. Jaewon Lee synthesized LiFePO₄ micro and nanoparticles in supercritical water and found that temperature and pH of the solution affected the size and morphology of LiFePO₄ particles [7]. One of the most effective strategies to improve the electrochemical performance for Li-ion batteries is to control the dimensions in the nanometer scale of olivine-type LiFePO₄ [8].

Since the pioneering work of Padhi and co-workers in 1997 [9], many researchers have studied the synthesis methods of LiFePO₄. The preparation method which controls the particle size and morphology of the cathode material is very critical to the material performances [10]. It is well known that solid-phase reaction is the traditional method for synthesizing LiFePO₄ while hydrothermal rout is attracting more attention [10,11]. Hydrothermal synthesis as a soft chemical approach expends short processing time and low energy, adopts simple instrument and makes the particle of target sample fine [3,9]. Jiajun Chen stated that the metal disorder increased at lower synthesis temperature, but decreased to nearly zero above 175 °C [10].

Though LiFePO₄ is famous for its safety, stable voltage platform, low toxicity and long cycle life, the intrinsic disadvantages of poor electronic conductivity and slow diffusion coefficient of lithium ion limit its application [12]. Carbon coating and doping some ion are primary approaches to solve the problems [13,14]. Especially, the addition of graphene to LiFePO₄ significantly improves the capacity and capacity retention of LiFePO₄ as a cathode material for Li-ion batteries [15]. The carbon coating can not only enhance its electronic conductivity, but meanwhile, the carbon can also protect Fe²⁺ from oxidizing to Fe³⁺ during the synthesis process. LiFePO₄/C composite has been a popular issue for many researchers [16].

Doping ion, especially doping supervalent ion, can improve the chemical activity obviously, and the effect of doping on electrochemical performances is very significant, and Sharma N has proved the existence state of doped ion within LiFePO₄ [17]. Jiezi Hu, Xian Zhao and Guo-rong synthesized Li(M, Fe)PO₄ (M = La, Ce, Nd, Mn, Co, Ti) and Li₁ – $_{4x}$ Ti_xFePO₄/C through solid-phase reaction, respectively [12,18, 19]. However, few people investigated the effect of doping rare earth element Sm, Eu, Yb via solid-phase reaction on the LiFePO₄ exception of

the papers published by our research group [20,21]. Recently Hüseyin Göktepe synthesized Yb-doped LiFePO₄/C composite by solution method, but the specific discharge capacity of 146 mAh/g at 0.1 C is too low [22]. In this paper, we have synthesized LiFe_{0.95}M_{0.05}PO₄/C (M = Sm, Eu, Yb) by hydrothermal rout, and their structure and electrochemical performance have been characterized in detail.

2. Experimental

LiFe_{0.95}M_{0.05}PO₄/C (M = Sm, Eu, Yb) were synthesized from LiOH, H₃PO₄, Fe(C₂H₃O₂)₂, M(C₂H₃O₂)₃ (M = Sm, Eu, Yb) with the molar ratio of 3:1:0.95:0.05 through hydrothermal route at 190 °C for 6 h. In order to avoid Fe²⁺ oxidizing to Fe³⁺, ascorbic acid was added into the reacting solution during the hydrothermal process. The resultant precipitate was washed with deionized water and filtered, and dried in the vacuum oven at 80 °C for 10 h. Then the hydrothermal product with the addition of 10 wt% glucose was calcined at 600 °C for 3 h under N₂ gas atmosphere. Finally, the LiFePO₄/C and LiFe_{0.95}M_{0.05}PO₄/C (M = Sm, Eu, Yb) samples were synthesized.

The thermochemical behavior of sample was analyzed using Themogravimetric apparatus (Pyris Diamond, PerkinElmer Thermal Analysis) under nitrogen gas flow. The sample was heated from ambient temperature to 800 °C at the rate of 10 °C min⁻¹. The crystallographic structure of the sample was characterized by powder X-ray diffractometer on a Rigaku D/max-2500/pc. The morphology of the sample was observed with a field-emission scanning electron microscope (FE-SEM) on S-4800 FE-SEM. The specific surface area of the sample was analyzed by Brunauer–Emmett–Teller (BET) (Micrometeritics ASAP2010 specific surface area) instrument.

The charge-discharge tests of as-synthesized samples were carried on in a half cell in which lithium metal piece was used as the anode. The cathode was composed of 80 wt% active material, 15 wt% acetylene black and 5 wt% polyvinylidene fluoride (PVDF) binder in Nmethylpyrrolidone (NMP) solvent to form a uniform slurry. The slurry was coated on Al foil and cut into square shape $(8 \times 8 \text{ mm})$. The mass of active material was about 1.5 mg/cm². The foil dried in a vacuum oven at 120 °C for 12 h. The cell was assembled in the glove box filled up with argon gas of high purity. The electrolyte was 1 M LiPF_{6} / EC + DEC (1:1, v/v). The cell was tested on the charge-discharge equipment over the voltage range 2.5–4.3 V at room temperature. Electrochemical impedance was tested on electrochemical workstation CHI660A. The sinusoidal excitation voltage applied to the cells was 0.5 mV and frequency range was between 0.01 Hz and 100 kHz. Cyclic Voltammetry (CV) was conducted by electrochemical workstation LK2005A at a scanning rate of 0.5 mVs⁻¹ and the potential span from 2.3 V to 4.2 V.

3. Result and discussion

Fig. 1 shows the TG-DTA (Thermogravimetric Analysis and Differential Thermal Analysis) curves of LiFePO₄/glucose before heat treatment. The weight loss under 100 °C corresponds to water absorbed in the sample. The weight loss during 100–250 °C results from the decomposition of the remaining organics, corresponding to the exothermic peaks at 154 and 214 °C. The weight loss above 250 °C is related to volatilization of glucose. The DTA curve shows a small endothermic peak at 521.5 °C, which is related to transformation of crystalline material [23]. The TG curve almost keeps a constant value above 600 °C till 800 °C. Therefore, the calcined temperature should be higher than 520 °C.

Fig. 2 shows the XRD patterns of the LiFePO₄/C and LiFe_{0.95}M_{0.05}PO₄/C (M = Sm, Eu, Yb) compounds. As shown in the Fig. 2, the dominant diffraction peaks can be indexed as the orthorhombic LiFePO₄ phase with space group Pmnb (62). The XRD result suggests that LiFePO₄/C and LiFe_{0.95}M_{0.05}PO₄/C (M = Sm, Eu, Yb) composites are well-crystallized and agree well with the olivine structure. There is no impurity phase to

Fig. 1. TG-DTA curves of LiFePO₄/glucose before heat treatment.

be detected in the as-prepared samples. It has implied that doping rare earth ion in LiFePO₄ does not change the lattice structure of LiFePO₄ synthesized via hydrothermal rout. Moreover, there is no obvious diffraction response of carbon because of its low content and amorphous state.

However, doping rare earth ion affects the intensity ratio of I(200)/I(020). The doped composites particles prepared via hydrothermal route have a random crystal orientation. The intensity of (020) plane seemly becomes weaker and the intensity ratio of I(200)/I(020) becomes larger with doping rare earth ion. The phenomenon mentioned above may be related to the fact that a part of rare earth ions occupies Fe site(M₂) into LiFePO₄/C, the rest would form solid solution with LiFePO₄ [17].

SEM images of LiFePO₄/C and LiFe_{0.95}M_{0.05}PO₄/C (M = Sm, Eu, Yb) composites are shown in Fig. 3. The stick-shaped particles with about dimension 490 nm \times 150 nm are smaller than particles with µm level scale produced by conventional solid-phase method. The doping rare earth ion into the LiFePO₄/C doesn't make its particle fine further. Actually, doping supervalent rare earth ion would create some defect, leading to the improvement of the electrochemical performance of LiFePO₄/C [24]. Another important feature of the SEM is that some particles of 10–30 nano scale level adhere to the surface of doped particles.

EDS image showed in the Fig. 4 indicates that the rare earth element has been doped in LiFePO₄/C. Wagemaker [24] reported that low levels of dopants were indeed soluble in the olivine lattice up to the extent of 3 mol%. According to the EDS we have reason to infer that the supervalent ions have occupied Fe²⁺ site in the LiFePO₄/C or have been dissolved into LiFePO₄/C to form solid solution [17].

Fig. 2. XRD pattern for LiFePO₄/C and LiFe_{0.95} $M_{0.05}$ PO₄/C (M = Sm, Eu, Yb) composite. a LiFePO₄/C b LiFe_{0.95}Sm_{0.05}PO₄/C c LiFe_{0.95}Eu_{0.05}PO₄/C d LiFe_{0.95}Yb_{0.05}PO₄/C.

Download English Version:

https://daneshyari.com/en/article/1293318

Download Persian Version:

https://daneshyari.com/article/1293318

Daneshyari.com