ELSEVIER

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Facile synthesis of VF₂ nanobelts and its application as a new floating-type absorbent for wastewater treatment

Qi Xu, Fei Teng*, Dongfang Yu, Liquan Yang, Yiran Teng

Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Joint Laboratory of Atmospheric Pollution Control (APC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China

ARTICLE INFO

Article history: Received 4 April 2016 Received in revised form 30 June 2016 Accepted 1 July 2016 Available online 1 July 2016

Keywords: VF₂ nanobelts NH₄F Adsorption Floating-type Dye

ABSTRACT

The VF₂ nanobelts are successfully prepared by a facile post-synthesis treatment method. We have mainly investigated the effects of fluorine sources, the molar ratio of NH₄F to V₂O₅, reaction temperature and time on the structures and properties of the samples. It is found that NH₄F can not only provide F^- , but also regulate the growth of VF₂ nanobelts. Moreover, the adsorption performance of VF₂ nanobelts has also been investigated. The results demonstrate that the as-synthesized VF₂ nanobelts exhibit a fast adsorption rate for methylene blue (MB), in which the adsorption equilibrium can be reached at 5–10 min. In addition, the adsorption process well fits with the pseudo-second-order model. Due to the ultra-light weight, VF₂ nanobelts can naturally float on the upper surface of aqueous system after stopping stirring. Hence, it can easily be recycled from wastewater. We expect that the VF₂ nanobelts, as a new floating-type absorbent, could be used for wastewater treatment.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the recent years, considerable attentions have been paid to one-dimensional nanostructures, e.g., nanowires, nanobelts, nanotubes, etc. [1-3] Due to their unique physical and chemical properties, one-dimensional nanostructures have been widely applied as photo catalysts [4], adsorbents [5], supercapacitors [6] and battery electrodes [7]. Many methods have been used to synthesize one-dimensional nanostructures, including electrospinning, chemical vapor deposition, vapor-liquid-solid method, and so on [8-10]. Recently, inorganic ion mediation method has aroused an extensive interest owing to its simplicity and low cost. For example, Zhu and coworkers [11] have synthesized single crystalline WO₃ nanobelts through an NH₄⁺-mediated method, which exhibit extremely high adsorption capacity for organic dye. To the best of our knowledge, nevertheless, the morphologycontrollable synthesis of vanadium difluoride (VF₂) has not been available in the existing references. On the other hand, adsorption is a simple and low-cost technology in wastewater treatments. However, the adsorbents are usually difficult to be separated from the aqueous system, especially when the powder-type adsorbents

http://dx.doi.org/10.1016/j.jfluchem.2016.07.001 0022-1139/© 2016 Elsevier B.V. All rights reserved. are used. Thus, it is still a big challenge to separate and recycle the adsorbents in wastewater treatment. It is desirable to develop the easy-recycled adsorbents.

Herein, we have prepared VF₂ nanobelts by a simple postsynthesis method, in which NH₄F was employed as the controlling chemical. To understand the effects of NH₄F on the samples, a series of comparative experiments were carried out. Moreover, the VF₂ nanobelts exhibit an excellent adsorption performance for methylene blue (MB) dye. It is important that due to the ultra-light weight, VF₂ nanobelts can naturally float on the upper surface of aqueous system after stopping stirring. As a result, it can easily be recycled from wastewater system.

2. Experimental

All reagents were of analytical grade, purchased from Beijing Chemical Reagents Industrial Company of China, and were used without further purification.

2.1. Preparation of VF₂ sample

Typically, 0.91 g $(5 \text{ mmol}) \text{V}_2\text{O}_5$ was dispersed into 30 mL of deionized water containing 0.0555 g $(1.5 \text{ mmol}) \text{ NH}_4\text{F}$. After being stirring for 0.5 h, the dispersions were transferred to a 40-mL Teflon autoclave and heated at 180 °C for 24 h. After the reaction

^{*} Corresponding author. E-mail address: tfwd@163.com (F. Teng).

was completed, the upper floating solids in the autoclave were collected; then the sample was washed with distilled water and absolute ethanol for several times, and dried at 60 °C for 5 h in air. Herein, the yield of VF₂ sample was 0.1-0.2 g, because an amount of ammonium vanadate formed and deposited in the bottom of autoclave. It is worth noting that the V₂O₅ powders used in the experiment were obtained by calcining commercial NH₄VO₃ at 400 °C for 2 h. Herein, the possible reaction between V₂O₅ and NH₄F is proposed as follows:

$$7 V_2 O_5 + 2 NH_4 F \rightarrow 2 VF_2 + 2 (NH_4)_2 V_6 O_{16} + 3 [O]$$

Because of the reaction complexity, the detailed reaction process needs further study in future.

2.2. Characterization

The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission

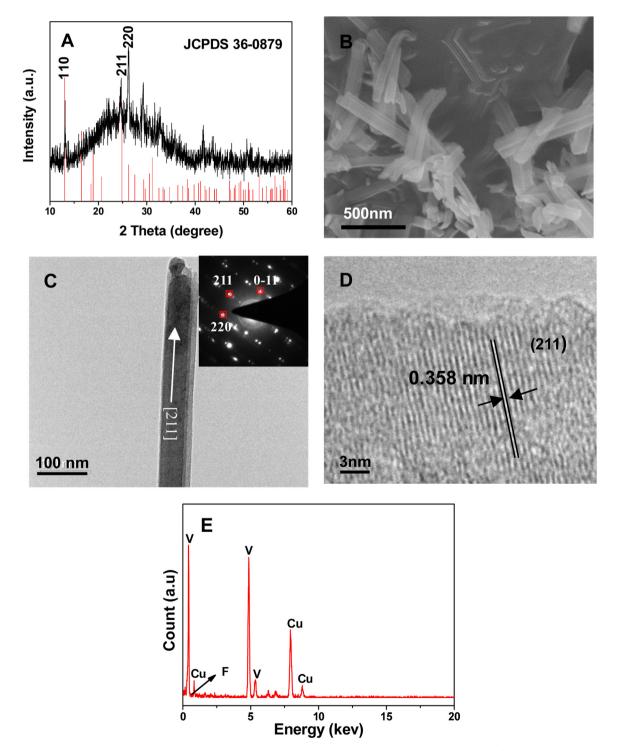


Fig. 1. (A) XRD pattern, (B) SEM image, (C) HRTEM image (the inset of SAED pattern), (D) Lattice fringe image and (E) EDS analysis of the VF₂ nanobelts: V₂O₅:NH₄F = 1:0.3 (molar ratio), 180 °C/24 h.

Download English Version:

https://daneshyari.com/en/article/1313532

Download Persian Version:

https://daneshyari.com/article/1313532

Daneshyari.com