Bioorganic & Medicinal Chemistry Letters 26 (2016) 3425-3428

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Anti-inflammatory polyphenol constituents derived from *Cissus* pteroclada Hayata

Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China

ARTICLE INFO

Article history: Received 30 January 2016 Revised 16 June 2016 Accepted 20 June 2016 Available online 21 June 2016

Keywords: Cissus pteroclada Hayata Bergenin Anti-inflammatory NF-κB

ABSTRACT

A new bergenin derivative, bergenin-11- $O-\alpha$ -D-galactopyranoside (compound **1**), together with seven known polyphenolic compounds, were isolated from the stem of *Cissus pteroclada Hayata*. The structures of the 8 compounds were elucidated by spectroscopic methods, including extensive 1D and 2D NMR techniques. Moreover, the in vitro anti-inflammatory effects of compounds (**1–8**) in LPS-stimulated murine macrophage RAW 264.7 cells were also investigated. Our results revealed that compound **1** inhibited the production of pro-inflammatory mediators NO and PGE₂ and the expression of NF- κ B, TNF- α , IL-1 β , iNOS and COX-2.

© 2016 Elsevier Ltd. All rights reserved.

Cissus pteroclada Hayata, a genus of perennial vine plant belonging to the family *Vitaceae*, is widely distributed in southern China, Indo-China peninsula, and Southeast Asia. *Cissus pteroclada Hayata* is popularly known as 'Sifang-teng' in Chinese, commonly named after its particularly ribbed stem. Traditional Chinese medicine literature recorded that the stem of *Cissus pteroclada Hayata* could activate circulation to remove blood stasis. Extracts from the *Cissus pteroclada Hayata* had been used for treating various aseptic inflammation, such as rheumatism, cramping, contusions, and bruising,¹ which may cause the production of inflammatory mediators and cytokines.

Inflammation is a central immune response of many pathophysiological conditions such as tissue injury, and host defenses against invading microbes.² As an important feature of the innate immune system, beneficial acute inflammation can progress into a chronic state, which if remains unresolved, is the pathological basis of various diseases.³

In the present work, we isolated, characterized the structure, and examined the anti-inflammatory potential of a new compound, bergenin-11-O- α -D-galactopyranoside (1), and seven other known polyphenolic compounds: bergenin (2), norbergenin (3), 11-O-galloylbergenin (4), purpurogallin (5), resveratrol (6), myricetin (7), and gallic acid (8) (Fig. 1) from the water fraction of 60% EtOH extract from the aerial portion of *Cissus pteroclada*

[†] These authors share the first authorship.

Hayata. This study focused on the structural elucidation of bergenin-11-O- α -D-galactopyranoside and the anti-inflammatory activities of the bergenin derivatives (1–4).

The water fraction of *Cissus pteroclada Hayata* extract was separated by repeated chromatography over MCI gel, sephadex LH-20 and semi-preparative HPLC, that yielded 8 polyphenol compounds.

Compound **1** was obtained as a light brown amorphous powder. Its molecular formula was determined as C₂₀H₂₆O₁₄ from the $[M-H]^-$ peak at m/z 507.1363 in the HR-ESI-MS. The ¹³C NMR spectrum (Table 1) showed 20 signals among which 14 were assigned to the aglycone of bergenin, the remaining six signals, including an anomeric carbon at δ 99.1, were indicative of the presence of a sugar unit. The sugar composition of 1 was determined by pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP)-HPLC of the acid hydrolysates of compound 1.⁴ Subsequently, the analysis showed that p-galactose was the sugar unit of **1**. The ¹H NMR spectrum of **1** showed two anomeric protons' signals at 4.74 (d, J = 3.6 Hz) and 4.99 (d, J = 10.5 Hz), which belonged to D-galactose and aglycone moiety (bergenin is a C-glycosides that contains D-glucose), respectively. Signals at δ 4.74 (d, J = 3.6 Hz) of ¹H NMR and δ 99.1 of ¹³C NMR indicated that the configuration of D-Galp was α type. Additionally, ring protons of each monosaccharide were assigned starting from the anomeric protons using TOCSY and H-H COSY spectra. The correlation observed in the HMBC spectrum between the proton at δ 4.74 (H-1') and the carbon at δ 67.7 (C-11) indicated that galactose was attached to C-11 of bergenin (Fig. 2).

Reading the second seco

^{*} Corresponding author. Tel.: +86 18807730696; fax: +86 0773 2120958. *E-mail address:* jiangkeq@sina.com (I-k. Qin).

Figure 1. Structures of compounds 1-8 isolated from Cissus pteroclada Hayata.

Table 1 ¹H and ¹³C NMR data of compounds 1 (DMSO- d_{6r} , 600, 150 MHz)^a

_	Position	¹³ C NMR	¹ H NMR	Position	¹³ C NMR	¹ H NMR
-	2	79.6	4.02 (t, J = 9.9 Hz)	1′	99.1	4.74 (d,
						J = 3.6 Hz)
	3	73.6	3.72-3.62(m)	2′	71.9	3.26-3.22(m)
	4	70.7	3.26-3.22(m)	3′	73.1	3.51-3.43(m)
	4a	79.5	3.83-3.76(m)	4′	72.9	3.51-3.43(m)
	6	163.5		5′	70.3	3.11(t, J = 9.2 Hz)
	6a	118.1		6′	60.9	3.72-3.62(m),
						3.51-3.43(m)
	7	109.4	7.01	3-0H		5.59
	8	140.6		4-0H		5.76
	9	148.1		8-0H		8.32
	10	150.9		10-OH		9.83
	10a	115.9		2'-OH		4.79
	10b	71.9	4.99 (d,	3′-OH		4.88
			J = 10.5 Hz)			
	11	67.7	3.83–3.76(m),	4'-OH		4.93
			3.72-3.62(m)			
	12	59.8	3.79(s)	6′-OH		4.51

^a Full assignments of the protons and carbons were accomplished by analysis of H–H COSY, TOCSY, HSQC and HMBC spectra, chemical shifts are in ppm and coupling pattern and coupling constants (*J* in Hz) are in parentheses.

Based on the above evidence, the structure of compound **1** was established as bergenin-11-O- α -D-galactopyranoside, a bergenin derivative that has not been previously identified.

The cytotoxic effects of the isolated compounds **1–8** were evaluated using MTT assay. None of the compounds affected the cell viability of RAW 264.7 macrophage cells in either the absence or presence of LPS, even following 24 h stimulation at 50 μ mol/L (data not shown).

Because of their similar structure, we evaluated the in vitro anti-inflammatory activity of compounds **1–4** and further examined the preliminary structure–functional activity relationship of the bergenin derivatives. The anti-inflammatory activity of compounds **5–8** are shown in Supplementary data. Nuclear factor- κ B (NF- κ B), an important transcription factor in the inflammatory response and a key regulator of multiple pro-inflammatory signaling pathways, is sequestered in the cytoplasm as an inactive precursor, and complexed with an inhibitor κ B (I κ B) protein.⁵ Inhibition of NF- κ B signaling becomes a potential target for either the treatment or prevention of inflammation. Therefore, we examined the effect of the four bergenin derivatives on NF- κ B signaling in LPS-stimulated macrophages.

As shown in Figure 3A, treatment with LPS increased the expression of NF- κ B, while compounds 1–4 inhibited the NF- κ B signaling pathway in a concentration-dependent manner. NF- κ B is known to play a critical role in the regulation of cell survival genes and induction of inflammatory enzymes and cytokine expression.^{6,7} Moreover, blocking the NF- κ B transcriptional activity in the RAW 264.7 nucleus can suppress the expression of iNOS and pro-inflammatory cytokines such as TNF- α , IL-1 β , PGE₂, and NO.⁸ Hence, we investigated the effects of compounds 1–4 on these

Figure 2. Key HMBC (a), TOCSY (b), H-H COSY (c) correlations and the absolute configuration (d) of 1.

Download English Version:

https://daneshyari.com/en/article/1368488

Download Persian Version:

https://daneshyari.com/article/1368488

Daneshyari.com