Bioorganic & Medicinal Chemistry Letters 26 (2016) 2289-2292

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Re-exploration of the mGlu₁ PAM Ro 07-11401 scaffold: Discovery of analogs with improved CNS penetration despite steep SAR

Pedro M. Garcia-Barrantes^a, Hyekyung P. Cho^{a,b}, Tahj M. Starr^a, Anna L. Blobaum^a, Colleen M. Niswender^{a,b,c}, P. Jeffrey Conn^{a,b,c}, Craig W. Lindsley^{a,b,d,*}

^a Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^b Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

^c Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA

^d Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA

ARTICLE INFO

Article history: Received 4 March 2016 Revised 11 March 2016 Accepted 12 March 2016 Available online 14 March 2016

Keywords: mGlu₁ Metabotropic glutamate receptor Positive allosteric modulator (PAM) Schizophrenia Structure–Activity Relationship (SAR)

ABSTRACT

This letter describes the re-exploration of the mGlu₁ PAM Ro 07-11401 scaffold through a multi-dimensional, iterative parallel synthesis approach. Unlike recent series of mGlu₁ PAMs with robust SAR, the SAR around the Ro 07-11401 structure was incredibly steep (only ~6 of 200 analogs displayed mGlu₁ PAM activity), and reminiscent of the CPPHA mGlu₅ PAM scaffold. Despite the steep SAR, two new thiazole derivatives were discovered with improved in vitro DMPK profiles and ~3- to 4-fold improvement in CNS exposure (K_ps 1.01-1.19); albeit, with a ~3-fold diminution in mGlu₁ PAM potency, yet comparable efficacy (~5-fold leftward shift of the glutamate concentration–response curve at 10 μ M). Thus, this effort has provided additional CNS penetrant mGlu₁ PAM tools in a different chemotype than the VU0486321 scaffold. These compounds will permit a better understanding of the pharmacology and therapeutic potential of selective mGlu₁ activation, while highlighting the steep SAR challenges that can often be encountered in GPCR allosteric modulator discovery.

© 2016 Elsevier Ltd. All rights reserved.

Efforts towards the development of positive allosteric modulators (PAMs) of the metabotropic glutamate receptor subtype 1 (mGlu₁) were pioneered by Knoflach and co-workers at Roche, resulting in 1-4 (Fig. 1).¹⁻³ These small molecule PAMs, coupled with data generated with negative allosteric modulators (NAMs) of mGlu₁,^{4,5} highlighted issues with species differences due to a single amino acid in rat versus human mGlu₁,^{6,7} and thus **4**, a PAM active on both human and rat mGlu₁, emerged as a valuable tool compound, despite modest CNS penetration ($K_p = 0.29$ and high protein binding ($f_u < 0.01$). For over a decade, **4** was the only in vivo tool compound to study selective mGlu₁ activation.⁸⁻¹¹ Based on recent genetic data implicating GRM1 in schizophrenia,¹²⁻¹⁴ coupled with data showing that the adverse effect liabilities of group I metabotropic glutamate receptors (mGluRs) are mediated by mGlu₅ and not mGlu₁,¹⁵ our lab has launched a program to develop the next generation of mGlu₁ PAMs.^{14–18} In the past year, we have reported on the discovery and optimization of novel mGlu₁ PAMs **5–7** with improved potency ($EC_{50}s < 20$ nM), DMPK profiles ($f_{u}s > 2.0\%$ unbound) and CNS penetration ($K_{p}s > 1$)

* Corresponding author. E-mail address: craig.lindsley@vanderbilt.edu (C.W. Lindsley). to afford new avenues for target validation and to assess the therapeutic potential of selective $mGlu_1$ activation.^{14–18}

Previously, revisiting the mGlu₄ PAM (-)-PHCCC scaffold led to the discovery of improved tool compounds.¹⁹ Therefore, over a decade after its discovery, we felt it was prudent to revisit the Ro 07-11401 scaffold in an effort to develop an in vivo tool compound within this series with improved disposition to account for any chemotype or ligand-biased pharmacology and expand the repertoire of validation tools for mGlu₁.

In our functional assays, Ro 07-11401 (**4**) was an equipotent mGlu₁ PAM on both rat (EC₅₀ = 276.5 nM, pEC₅₀ = 6.56 ± 0.08, 109 ± 3% Glu Max) and human (EC₅₀ = 246.0 nM, pEC₅₀ = 6.61 ± 0.08, 96 ± 3% Glu Max), but with a modest disposition profile (vide infra).^{14–18} Thus, we pursued a multi-dimensional optimization plan (Fig. 2) to explore SAR around **4** in an attempt to improve disposition by identifying replacements for the weakly basic oxadiazole (effectively neutral with the pendant CF₃ moiety) with analogs **9** and the lipophilic 9*H*-xanthene moiety in analogs **8**. Once identified, optimal moieties would then be combined.

The synthesis was straightforward (Scheme 1). A variety of commercially available 2-amino-4-substitued oxazoles **10** were coupled under HATU conditions with a diverse array of carboxylic acids to provide analogs **8** in yields ranging from 18% to 54%. Sim-

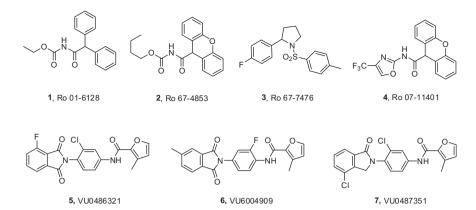
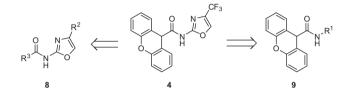
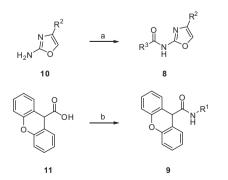
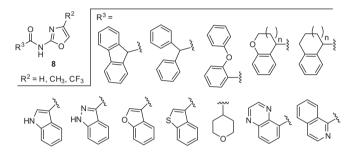


Figure 1. Structures of representative mGlu₁ PAMs 1-7.


Figure 2. Chemical optimization plan to identify replacements for the lipophilic oxadiazole with analogs 9, and the lipophilic 9*H*-xanthene with analogs 8.

ilarly, the 9*H*-xanthene-9-carboxylic acid **11** was coupled under HATU conditions to a variety of 5- and 6-membered heterocyclic amines to deliver analogs **9** in 11-94% yields. For both series, many of the amines and acids coupled poorly due to a combination of steric and stereoelectronic effects, as well as a range of poor solubility.

In all, over 200 analogs of **8** and **9** were synthesized and triaged via a 10 μ M single point screen on human mGlu₁, using an EC₂₀ concentration of glutamate, prior to full concentration–response curves (CRCs) on both human and rat mGlu₁. Surprisingly, all analogs **8** (Fig. 3) were uniformly inactive mGlu₁ PAMs (no potentiation of an EC₂₀ of glutamate at a concentration of 10 μ M), indicating that the 9*H*-xanthene was a critical pharmacophore. The SAR was remarkably steep, and reminiscent of the steep SAR encountered with the non-MPEP, mGlu₅ PAM CPPHA,²⁰ wherein virtually any modification led to a complete loss of PAM activity. Obviously, these data cast doubt on the success of the campaign with analogs **9**, wherein the 9H-xanthene amide was held constant. While SAR once again was steep, active analogs did result (Table 1); however, functionalized pyrazoles, oxazoles, oxadiazoles, thiophenes, piperidines, azetidines, cycloalkyl, a structurally

Scheme 1. Reagents and conditions: (a) R^3CO_2H , DIEA, DMF, 60 °C, 18–54%; (b) H_2NR^1 , HATU, DIEA, DCE, rt, 11–94%.

Figure 3. Representative 9*H*-xanthene amide replacement analogs **8** that are inactive $mGlu_1$ PAMs.

Table 1

Structures and activities for analogs 9

Compd	R ¹	hmGlu1 EC ₅₀ (μM) ^a [% Glu Max ±SEM]	mGlu ₁ pEC ₅₀ (±SEM)
9a	CN N Zz	0.71 [110±6]	6.14 ± 0.12
9b	N 33 S	0.90 [89±3]	6.04 ± 0.07
9c	N N S	1.4 [75 ± 3]	5.85 + 0.07
9d	N N V S	2.7 [101 ± 7]	5.57 + 0.11
9e	zz S	>10 [54 ± 7]	<5
9f	N ZZ S	4.8 [96 ± 11]	5.32 ± 0.20
9g	N ZZ S	>10 [68 ± 8]	<5
9h	N	1.7 [58 ± 3]	5.77 ± 0.11

^a Calcium mobilization mGlu₁ assays, values are average of three (n = 3) independent experiments performed in triplicate.

Download English Version:

https://daneshyari.com/en/article/1368609

Download Persian Version:

https://daneshyari.com/article/1368609

Daneshyari.com