Two new Pb coordination polymers derived from pyrimidine-2thiolate: Synthesis, methyl substitution-induced effect and properties

Jiang-Feng Song ${ }^{\text {a, }}{ }^{*}$, Si-Zhe Li ${ }^{\text {a }}$, Rui-Sha Zhou ${ }^{\text {a }}$, Tuo-Ping Hu ${ }^{\text {a }}$, Jia Shao ${ }^{\text {a }}$, Xiao Zhang ${ }^{\text {b, ** }}$
a Department of Chemistry, North University of China, Taiyuan, Shanxi, 030051, PR China
${ }^{\mathrm{b}}$ Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Heilongjiang, 150080, PR China

A R T I C L E I N F O

Article history:

Received 8 December 2015
Received in revised form
4 March 2016
Accepted 4 March 2016
Available online 9 March 2016

Keywords:

Coordination polymer
Substitution group Pb
Crystal structure

Abstract

Two new coordination compounds, $\left\{\mathrm{Pb}(\mathrm{pymt})_{2}\right\}_{\infty}(\mathbf{1})$ and $\left\{\mathrm{Pb}(\mathrm{mpymt})_{2}\right\}_{\infty}(\mathbf{2})$ (pymt = pyrimidine-2thiolate and mpymt $=4$-methyl-pyrimidine-2-thione) have been synthesized under solvothermal conditions and characterized by elemental analyses, IR spectroscopy, thermogravimetric analysis, powder Xray diffraction and single-crystal X-ray diffraction. In compounds 1 and 2, pymt ${ }^{-}$and mpymt $^{-}$adopt the same coordination modes $\left(\mu-1 \kappa \mathrm{~N}, \mathrm{~S}\right.$ and $\left.\mu_{2}-1 \kappa \mathrm{~N}, \mathrm{~S}: 2 \kappa \mathrm{~S}, \mathrm{~N}\right)$ to interacted with Pb^{2+}, however, different topology structures for compounds $\mathbf{1}$ and $\mathbf{2}$ are obtained. Compound $\mathbf{1}$ displays a one-dimensional (1D) ribbon with square cavity constructed from two double concentric chains of $[\mathrm{Pb}-\mathrm{S}]_{\infty}$ and [Pb-Pyrimidine] ∞_{∞} sharing Pb 1 ions. Compound 2 shows 1D polymeric single chain constructed by $[\mathrm{Pb}-\mathrm{S}]_{\infty}$ and $[\mathrm{Pb}-$ methyl-pyrimidine $]_{\infty}$ chains. The results revealed that the methyl groups don't influence the coordination modes of pyrimidine-2-thiolate but directed the structural variations. Moreover, the fluorescent properties of compounds $\mathbf{1}$ and $\mathbf{2}$ were investigated.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Organic sulfur ligands as organic building blocks in coordination chemistry have attracted considerable interest owing to their versatile binding modes, good biological activities, excellent adsorbent properties for the retention of heavy metals and electronic properties [1-6]. Compared with the organic carboxylates, the coordination complexes based on organic sulfur ligands are more difficult to synthesize due to their rich redox chemistry based on both oxidative formation and reduction cleavage of the $\mathrm{C}-\mathrm{S}$ bond [7-18].

Recently, pyrimidine-2-thiolate (pymt), which contains two heterocyclic nitrogen atoms adjacent to the thioamide group and show thione-thiol ($-\mathrm{N}=\mathrm{C}-\mathrm{SH} \leftrightarrow-\mathrm{NH}-\mathrm{C}=\mathrm{S}$) equilibrium, were widely applied to coordinate with transition, post-transition, and main group metal atoms in neutral and/or deprotonated ligands to assemble mono-, di-, tri-, tetra-, hexanuclear and polymeric complexes [19-34]. The analyses of the reported complexes based on pymt revealed that the research mainly focused on the synthesis of coordination compounds with metal centers $\mathrm{Pd}, \mathrm{Pt}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Sn}, \mathrm{Zn}$,

[^0]Cd, etc., however, the effect of substituent groups of pymt on the structure of the complexes are not reported yet. As the derivative of pymt, namely, 4-methyl-pyrimidine-2-thione (mpymt) is similar with pymt, however, the apparent differences between them are observed. On one hand, the methyl group of mpymt ligand may provide steric hindrance to influence the coordination modes and aggregation state of the final products; on the other hand, the introduction of methyl substituent groups lower the linker symmetry, which might induce the symmetry change of the target complexes (Scheme 1). So, the effects of substituent groups on the coordination modes of pyrimidine-2-thiolate as well as structures and properties of the targeted complexes were meaningful.

Following our interests on the preparation of coordination polymers based on organosulfur ligands [17], in this work, we have focused on the effect of substituent groups of pymt on the structure and function of the complexes. Pymt and mpymt are chosen as organic linkers to construct two new Pb coordination compounds, $\left\{\mathrm{Pb}(\text { pymt })_{2}\right\}_{\infty}$ (1) and $\left\{\mathrm{Pb}(\mathrm{mpymt})_{2}\right\}_{\infty}$ (2). Compound $\mathbf{1}$ displays a 1D ribbon with square cavity, different from the 1D polymeric single chain of compound $\mathbf{2}$. We hope that the studies of the effects of the substituent units on the construction of the targeted complexes should contribute to deepen this research field.

Scheme 1. The linker symmetry was reduced from pymt to mpymt.

2. Experimental section

2.1. Materials and measurements

All chemicals and solvents purchased were of reagent grade and were used without further purification. Elemental analysis (C, H, N) was performed on a Perkin-Elmer 240C elemental analyzer. Infrared (IR) spectra were obtained with KBr Pellets on a Perkin Elmer Spectrum One FT-IR spectrometer in the range $400-4000 \mathrm{~cm}^{-1}$. Thermogravimetric analysis (TGA) was performed on a Perkin-Elmer TGA-7000 thermogravimetric analyzer under the flowing nitrogen at a temperature ramp rate of $10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$. Powder X-ray diffraction (PXRD) patterns of the samples were recorded by a RIGAKU-DMAX2500 X-ray diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation. Photoluminescence (PL) excitation and emission spectra were recorded with a Jobin Yvon Fluoro Max-4 spectrophotometer equipped with a 150 W xenon lamp as the excitation source at room temperature.

2.1.1. Synthesis of $\left\{\mathrm{Pb}(\text { pymt })_{2}\right\}_{\infty}(\mathbf{1})$

A solution of pymt ($5.6 \mathrm{mg}, 0.05 \mathrm{mmol}$) in 6 mL water $/$ methanol/ DMF mixed solution ($\mathrm{v}: \mathrm{v}=3: 2: 1$) was directly mixed with a 1 mL $0.10 \mathrm{~mol} \mathrm{~L}^{-3} \mathrm{~Pb}(\mathrm{Ac})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ solution at room temperature in a 15 mL beaker. The resulted mixture was transferred and sealed in a 25 mL Teflon-lined stainless steel reactor, and heated at $100^{\circ} \mathrm{C}$ for 72 h . Upon cooling to room temperature, the colorless crystals were filtered and washed with ethanol. Yield: 65% (based on pymt). Elemental anal. Calcd $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{PbS}_{2} \mathrm{~N}_{4}$ (429): C 22.38, H 1.40, N 13.05 ;
 1566(s), 1539(s), 1371(s), 1175(m), 745(m), 640(w).

2.1.2. Synthesis of $\left\{\mathrm{Pb}(\mathrm{mpymt})_{2}\right\}_{\infty}$ (2)

The procedure was the same as that for $\mathbf{1}$ except that pymt was replaced by mpymt ($6.3 \mathrm{mg}, 0.05 \mathrm{mmol}$). Upon cooling to room temperature, the yellow crystals were filtered and washed with ethanol. Yield: 47\% (based on mpymt). Elemental anal. Calcd. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{PbN}_{4} \mathrm{~S}_{2}$ (457) : C 26.26, H 2.19, N 12.25; Found: C 26.29, H 2.20, N 12.24\%. IR data (KBr, cm ${ }^{-1}$): 2924(w), 1576(s), 1545(s), 1371(m), 1170(m), 747(m), 642(m).

2.2. Crystal structure determination

The crystal structures were determined by single-crystal X-ray diffraction. Reflection data were collected on a Bruker SMART CCD area-detector diffractometer ($\mathrm{Mo}-\mathrm{K} \alpha$ radiation, graphite monochromator) at room temperature with ω-scan mode. Empirical adsorption corrections were applied to all data using SADABS. The structures were solved by direct methods and refined by fullmatrix least squares on F^{2} using SHELXTL 97 software [35]. Nonhydrogen atoms were refined anisotropically, The hydrogen atoms of the ligands were localized in their calculated positions and refined using a riding model. The crystallographic data and pertinent information for compounds $\mathbf{1}$ and $\mathbf{2}$ are given in Table 1; selected bond lengths and angles in Table 2.

Table 1
Crystal data and structure refinement for compounds $\mathbf{1}$ and $\mathbf{2}$.

Compounds	1	2
Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{PbS}_{2}$	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{PbS}_{2}$
Formula weight	429.51	457.53
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	P2 1_{1} /
a, \AA ¢	27.479 (5)	8.0210 (16)
b, Å	8.5250 (17)	8.1097 (16)
c, \AA	14.635 (3)	19.697 (4)
α, deg	90	90
β, deg	109.58 (3)	94.89 (3)
γ, deg	90	90
Volume (\AA^{3})	3230.1 (11)	1276.6 (4)
Z	12	4
$\rho_{\text {calc }} / \mathrm{gcm}{ }^{-3}$	2.650	2.381
Absorption coef./mm ${ }^{-1}$	16.026	13.524
θ range (${ }^{\circ}$)	3.05-27.48	3.26-27.48
Crystal size (mm^{3})	$0.30 \times 0.28 \times 0.14$	$0.33 \times 0.12 \times 0.11$
Reflections collected	15036	12155
Unique reflections (Rint)	3685 (0.1043)	2926 (0.0413)
Completeness	99.8\%	99.7\%
Goodness-of-fit on F^{2}	1.018	1.083
R indexes $[I>2 \sigma(I)]^{\text {a }}$	$\begin{aligned} & R 1=0.0401 \\ & w R 2=0.0948 \end{aligned}$	$\begin{aligned} & R 1=0.0256 \\ & w R 2=0.0522 \end{aligned}$
R (all data) ${ }^{\text {a }}$	$\begin{aligned} & R 1=0.0479, \\ & w R 2=0.0988 \end{aligned}$	$\begin{aligned} & R 1=0.0327 \\ & w R 2=0.0545 \end{aligned}$

${ }^{\mathrm{a}} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| ; w R=\left[\Sigma \mathrm{w}\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)_{2} / \Sigma \mathrm{W}\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$.

Table 2
Bond lengths (\AA) and Angles (deg) for compounds $\mathbf{1}$ and $\mathbf{2}$.

Compound 1			
$\mathrm{Pb}(1)-\mathrm{N}(1)$	2.656 (5)	$\mathrm{N}(3)-\mathrm{Pb}(2)-\mathrm{N}(2)$	137.64 (15)
$\mathrm{Pb}(1)-\mathrm{S}(1)$	2.7922 (17)	$\mathrm{N}(3)-\mathrm{Pb}(2)-\mathrm{S}(3) \# 2$	88.43 (12)
$\mathrm{Pb}(1)-\mathrm{N}(5)$	2.969 (5)	$\mathrm{N}(2)-\mathrm{Pb}(2)-\mathrm{S}(3) \# 2$	85.78 (11)
$\mathrm{Pb}(1)-\mathrm{S}(3)$	3.3914 (18)	$\mathrm{N}(3)-\mathrm{Pb}(2)-\mathrm{S}(2)$	58.69 (12)
$\mathrm{Pb}(2)-\mathrm{N}(3)$	2.583 (5)	$\mathrm{N}(2)-\mathrm{Pb}(2)-\mathrm{S}(2)$	79.44 (11)
$\mathrm{Pb}(2)-\mathrm{N}(2)$	2.672 (5)	$\mathrm{S}(3) \# 2-\mathrm{Pb}(2)-\mathrm{S}(2)$	90.80 (5)
$\mathrm{Pb}(2)-\mathrm{S}(3) \# 2$	2.7200 (17)	$\mathrm{N}(3)-\mathrm{Pb}(2)-\mathrm{N}(6) \# 2$	75.82 (16)
$\mathrm{Pb}(2)-\mathrm{S}(2)$	2.7526 (17)	$\mathrm{N}(2)-\mathrm{Pb}(2)-\mathrm{N}(6) \# 2$	131.24 (14)
$\mathrm{Pb}(2)-\mathrm{N}(6) \#^{2}$	2.907 (5)	$\mathrm{S}(3) \# 2-\mathrm{Pb}(2)-\mathrm{N}(6) \# 2$	55.82 (10)
$\mathrm{Pb}(2)-\mathrm{S}(1)$	3.3295 (17)	$\mathrm{S}(2)-\mathrm{Pb}(2)-\mathrm{N}(6) \# 2$	124.55 (12)
$\mathrm{S}(1)-\mathrm{C}(1)$	1.720 (6)	$\mathrm{N}(3)-\mathrm{Pb}(2)-\mathrm{S}(1)$	170.20 (12)
S (2)-C (5)	1.729 (5)	$\mathrm{N}(2)-\mathrm{Pb}(2)-\mathrm{S}(1)$	50.93 (11)
S (3)-C (9)	1.724 (6)	$\mathrm{S}(3) \# 2-\mathrm{Pb}(2)-\mathrm{S}(1)$	87.67 (5)
$\mathrm{N}(1) \# 1-\mathrm{Pb}(1)-\mathrm{N}(1)$	124.9 (2)	$\mathrm{S}(2)-\mathrm{Pb}(2)-\mathrm{S}(1)$	130.33 (4)
$\mathrm{N}(1) \# 1-\mathrm{Pb}(1)-\mathrm{S}(1) \# 1$	57.83 (11)	N (6)\#2-Pb(2)-S (1)	94.58 (11)
$\mathrm{N}(1)-\mathrm{Pb}(1)-\mathrm{S}(1) \# 1$	81.39 (12)	$\mathrm{S}(3)-\mathrm{Pb}(1)-\mathrm{S}(3) \# 1$	92.98 (6)
$\mathrm{N}(1)-\mathrm{Pb}(1)-\mathrm{S}(1)$	57.83 (11)	$\mathrm{N}(5) \# 1-\mathrm{Pb}(1)-\mathrm{S}(3) \# 1$	48.52 (11)
$\mathrm{S}(1) \# 1-\mathrm{Pb}(1)-\mathrm{S}(1)$	84.96 (8)	$\mathrm{N}(5)-\mathrm{Pb}(1)-\mathrm{S}(3) \# 1$	101.62 (11)
$\mathrm{N}(1) \# 1-\mathrm{Pb}(1)-\mathrm{N}(5)$	85.46 (15)	$\mathrm{S}(1)-\mathrm{Pb}(1)-\mathrm{S}(3) \# 1$	168.18 (5)
$\mathrm{N}(1)-\mathrm{Pb}(1)-\mathrm{N}(5)$	112.87 (15)	$\mathrm{S}(1) \# 1-\mathrm{Pb}(1)-\mathrm{S}(3) \# 1$	92.11 (5)
$\mathrm{S}(1) \# 1-\mathrm{Pb}(1)-\mathrm{N}(5)$	140.25 (11)	$\mathrm{N}(1)-\mathrm{Pb}(1)-\mathrm{S}(3) \# 1$	133.08 (10)
$\mathrm{S}(1)-\mathrm{Pb}(1)-\mathrm{N}(5)$	74.03 (11)	$\mathrm{N}(1) \# 1-\mathrm{Pb}(1)-\mathrm{S}(3) \# 1$	87.34 (12)
$\mathrm{N}(1) \# 1-\mathrm{Pb}(1)-\mathrm{N}(5) \# 1$	112.87 (15)	$\mathrm{N}(5) \# 1-\mathrm{Pb}(1)-\mathrm{S}(3)$	101.62 (11)
$\mathrm{N}(1)-\mathrm{Pb}(1)-\mathrm{N}(5) \# 1$	85.46 (15)	$\mathrm{N}(5)-\mathrm{Pb}(1)-\mathrm{S}(3)$	48.52 (11)
$\mathrm{S}(1) \# 1-\mathrm{Pb}(1)-\mathrm{N}(5) \# 1$	74.03 (11)	$\mathrm{S}(1)-\mathrm{Pb}(1)-\mathrm{S}(3)$	92.11 (5)
$\mathrm{S}(1)-\mathrm{Pb}(1)-\mathrm{N}(5) \# 1$	140.25 (11)	$\mathrm{S}(1) \# 1-\mathrm{Pb}(1)-\mathrm{S}(3)$	168.18 (5)
$\mathrm{N}(5)-\mathrm{Pb}(1)-\mathrm{N}(5) \# 1$	140.9 (2)	$\mathrm{N}(1)-\mathrm{Pb}(1)-\mathrm{S}(3)$	87.34 (12)
$\mathrm{N}(1) \# 1-\mathrm{Pb}(1)-\mathrm{S}(3)$	133.08 (10)		
Compound 2			
$\mathrm{N}(2)-\mathrm{Pb}(1) \# 3$	2.673 (4)	N (3)-Pb(1)-S (1)	90.54 (8)
N (3)-Pb(1)	2.653 (4)	$\mathrm{N}(2) \# 4-\mathrm{Pb}(1)-\mathrm{S}(1)$	87.28 (8)
$\mathrm{N}(1)-\mathrm{Pb}(1)$	2.884 (4)	$\mathrm{S}(2)-\mathrm{Pb}(1)-\mathrm{S}(1)$	89.76 (4)
$\mathrm{Pb}(1)-\mathrm{S}(2)$	2.7065 (15)	$\mathrm{S}(1)-\mathrm{Pb}(1)-\mathrm{S}(1) \# 4$	86.24 (3)
$\mathrm{Pb}(1)-\mathrm{S}(1)$	2.7081 (12)	$\mathrm{N}(1)-\mathrm{Pb}(1)-\mathrm{S}(1) \# 4$	82.711 (7)
$\mathrm{Pb}(1)-\mathrm{S}(1) \# 4$	3.4755 (14)	$\mathrm{N}(2) \# 2-\mathrm{Pb}(1)-\mathrm{S}(1) \# 4$	48.984 (8)
$\mathrm{N}(3)-\mathrm{Pb}(1)-\mathrm{N}(2) \# 4$	139.55 (13)	$\mathrm{S}(2)-\mathrm{Pb}(1)-\mathrm{S}(1) \# 2$	129.70 (3)
$\mathrm{N}(3)-\mathrm{Pb}(1)-\mathrm{S}(2)$	58.83 (10)	$\mathrm{N}(3) \# 4-\mathrm{Pb}(1)-\mathrm{S}(1) \# 2$	170.76 (1)
$\mathrm{N}(2) \# 4-\mathrm{Pb}(1)-\mathrm{S}(2)$	80.77 (9)	$\mathrm{N}(2) \# 4-\mathrm{Pb}(1)-\mathrm{N}(1)$	122.67 (10)
$\mathrm{N}(3)-\mathrm{Pb}(1)-\mathrm{N}(1)$	88.31 (11)	$\mathrm{S}(1)-\mathrm{Pb}(1)-\mathrm{N}(1)$	56.50 (8)
$\mathrm{S}(2)-\mathrm{Pb}(1)-\mathrm{N}(1)$	133.83 (8)		

https://daneshyari.com/en/article/1407774

Download Persian Version:

https://daneshyari.com/article/1407774

Daneshyari.com

[^0]: * Corresponding author.
 ** Corresponding author.
 E-mail address: jfsong0129@nuc.edu.cn (J.-F. Song).

