Journal of Molecular Structure 1128 (2017) 51-56

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: http://www.elsevier.com/locate/molstruc

Temperature dependence of the damping constant and the relaxation time close to the tetragonal-cubic phase transition in SrZrO₃

H. Yurtseven ^{a, *}, A. Kiraci ^{a, b}

^a Department of Physics, Middle East Technical University, 06531, Ankara, Turkey
^b Inter-Curricular Courses Department, Physics Group, Cankaya University, 06790, Ankara, Turkey

ARTICLE INFO

Article history: Received 27 May 2016 Received in revised form 12 August 2016 Accepted 17 August 2016 Available online 19 August 2016

Keywords: Damping constant Raman frequency Relaxation time Soft modes Tetragonal-cubic transition SrZrO₃

ABSTRACT

The damping constant Γ_{sp} due to the pseudospin-phonon coupling is calculated as a function of temperature using the pseudospin-phonon coupled model and the energy fluctuation model close to the tetragonal-cubic transition ($T_c = 1443$ K) in SrZrO₃. Using the observed Raman frequencies and the linewidth (FWHM) of the soft modes (E_g and A_{1g}) from the literature, predictions of both models studied, are examined for the tetragonal-cubic transition in this crystalline system. Values of the activation energy *U* are extracted and also the inverse relaxation time is predicted as a function of temperature close to the phase transition studied in SrZrO₃.

Divergence behaviour of the damping constant (FWHM) of the soft modes is predicted from both models as also observed experimentally when T_C is approached from the tetragonal to the cubic phase in SrZrO₃. The relaxation time also diverges close to the T_C in this crystal. It is indicated that the tetragonal cubic transition is of a second order as predicted from both models studied here, as also observed experimentally in SrZrO₃.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Perovskite-type oxide structures which have the general formula of ABO₃ where A = Ca, P for Ba and B = Ti or Zr, have been investigated extensively since 1940s [1]. Among those materials, SrZrO₃ has also been studied extensively due to its hightemperature applications such as fuel cells, electrolysis and hydrogen gas sensors [2–4].

SrZrO₃ undergoes a series of phase transitions. It is orthorhombic (space group Pbnm) at room temperature and changes to the orthorhombic Cmcm at 973 K. As the temperature increases to 1103 K, its crystal structure changes to the tetragonal (I4/mcm) and then to cubic Pm $\overline{3}$ m transition at 1443 K [5–12]. This perovskite material has a high melting temperature of about 2920 K [13] so that it has a cubic structure in a wide range of temperature, which is favorable from the point of view of technological applications as also pointed out previously [4]. Structural changes in SrZrO₃ have been studied experimentally by thermal analysis and X-ray neutron diffraction [5,6] and by the measurements of high-temperature heat capacity and thermal expansion [7,8], elastic anomalies in the SrZrO₃- SrTiO₃ solid solution [15]. Recently, structural phase transitions in SrZrO₃ have been investigated with the differential scanning calorimetry (DSC), high temperature X-ray diffraction and dilatometry as anomalies of thermal expansion coefficients [16]. The phase transitions in this material have been obtained as second order, first order and second order at 1042, 1119 and 1375 K, respectively and the variation of heat capacity (ΔC_n) at the second order phase transition has been calculated [16]. Photoluminesence emission in SrZrO₃ and SrTiO₃ perovskites [3,17] and phase transition in SrZrO₃ by Raman spectroscopy [11,12] have also been studied experimentally. First-principles density functional calculations have been performed to study the electronic properties of SrZrO₃[4]. Using density functional perturbation theory, the optical dielectric constant, Born effective charges and phonon dipersion curves of cubic SrZrO₃ have been evaluated [18]. Using this theory, the electronic band structure, the electronic and lattice contribution to the dielectric constant of orthorhombic SrZrO₃ have been investigated [19]. Also, the electronic band structure of orthorhombic Pbnm SrZrO₃ has been calculated using a density functional theory with local spin-density approximation method [20]. The optical properties of cubic SrZrO₃ have been calculated and it has been pointed out that there are no experimental data for optical properties of the paraelectric cubic phase of this compound [21].

^{*} Corresponding author. E-mail address: hamit@metu.edu.tr (H. Yurtseven).

More recently, using first-principles calculations the electronic, structural and vibrational properties of SrZrO₃ have been investigated [22].

It has been shown that a phase transition in SrZrO₃ is due to the consideration of a soft mode of vibration associated with the relations of the oxygen octhohedron in the cubic phase [6], in particular, the phase transition between cubic and tetragonal phases ($T_c = 1443$ K) is due to the collapse of the R_{25} mode at the R point of the cubic Brillouin zone [11]. The lattice dynamics of cubic SrZrO₃ has shown that the experimentally observed I4/mcm and Imma low-symmetry phases can be regarded as results of soft mode condensation at R and M points, respectively [18]. Due to the fact that the two lowest-frequency Raman-active E_g and A_{1g} modes in the tetragonal (I4/mcm) phase originate from the soft R_{25} (F_{2u}) mode in the cubic phase of SrZrO₃, their Raman frequencies soften as $T \rightarrow T_C$ toward the tetragonal (I4/mcm) phase (below T_C) and the temperature dependence of both soft modes (E_g and A_{1g}) obeys the Curie law, also those soft modes remain underdamped and their damping constant (linewidth) increases with temperature [23], as pointed out previously [11]. Experimentally, those two optical modes (Eg and A1g) showed remarkable softening approached together and their peak intensities continuously decrased with increasing temperature, as pointed out previously [18]. In particular, between the orthorhombic (Pbnm) and orthorhombic (Cmcm) phases, the Raman mode A_g (at 500 cm⁻¹) as an optical mode shows considerable softening up to 973 K and hardening above 1023 K, as observed experimentally [12]. In a phase transition involving Raman active modes, the order parameter is a rotation (internal strain) of the ZrO₆ octohedra associated with a soft $q \approx 0$ acoustical phonon (the ferroelastic mode) [12] as the ferroelastic transition of the optical type [24]. Thus, it has been indicated that the phenomenon of softening and hardening at around T_C can be interpreted as originating at the phase transition temperature, which satisfies the universal scaling of the internal strain coordinate that is associated with the optical Ag mode as an order parameter [12].

As shown by various ferroelectric materials such as KDP (potassium dihydrogen phosphate), TGS (triglycine sulfate), BaTiO₃, PbTiO₃, PbZr_{1-x}Ti_xO₃ (PZT-x) etc., the dynamic properties of SrZrO₃ can change near the tetragonal-cubic transition ($T_C = 1443$ K). As in the ferroelectric compounds stated above, the tetragonal-cubic transition in SrZrO₃ is associated with the soft modes, mainly the E_g and A_{1g} modes with the Raman frequencies decreasing abruptly as the T_C is approached from the tetragonal to the cubic phase with increasing temperature. Not only the Raman frequencies of those soft modes but also their linewidths (FWHM) and the relaxation time as expected, exhibit anomalous behaviour near T_C in SrZrO₃. The anomalous behaviour of those physical quantities considered near T_C as observed experimentally, can be described by the theoretical models. In particular, the temperature dependence of the Raman frequencies, linewidths and the relaxation time of the soft modes (Eg and A_{1g}) in SrZrO₃, which are associated with the phase transition between the tetragonal and the cubic phases in this compound can be investigated near T_C. Thus, by analyzing the experimental data for the dynamic quantities on the basis of the predictions of the theoretical models, a first order and second order (or weakly first order and nearly second order) nature of the transition between the tetragonal and cubic phases, can be explained in SrZrO₃. This is the motivation of our study given here.

In this study, by considering the temperature dependence of the Raman frequencies of the soft modes (E_g and A_{1g}) as an order parameter in SrZrO₃, we calculate the damping constant (linewidth) of those modes for the tetragonal-cubic transition ($T_c = 1443$ K) in this material. For this calculation, pseudospin-phonon coupled model and the energy flucuation model are

used, which have been applied to the KDP type ferroelectrics [25,26]. We have used previously those two models to calculate the temperature dependence of the damping constant of different phonon modes for BaTiO₃[27,28], PbTiO₃[29] and PbZr_{1-x}Ti_xO₃ (x = 0.45) [30]. In the present work, by using the experimental data for the Raman frequencies of the E_g and A_{1g} phonon modes in SrZrO₃[11], the damping constants due to both models are fitted to the observed linewidhs (FWHM) near the tetragonal-cubic phase transition. Activation energy is deduced from the temperature dependence of the damping constant of the soft modes (E_g and A_{1g}) and the inverse relaxation time is predicted as a function of temperature in SrZrO₃. Below, in Section 2 we give our calculations and results. In Sections 3 and 4, discussion and conclusions are given.

2. Calculation and results

The temperature dependence of the damping constant for the soft modes (E_g and A_{1g} modes) in SrZrO₃ was calculated using two models, namely, pseudospin-phonon coupled model and the energy fluctuation model. In those two models, the damping constant Γ_{sp} is calculated from the temperature dependence of the order parameter *P* due to the pseudospin-phonon interaction according to the relation

$$\Gamma_{sp} \propto \left(1 - P^2\right) \left\langle \tau_q^2 \middle/ \tau \right\rangle \tag{1}$$

where τ_q is the relaxation time of the order parameter with wave vector q and τ is the flipping time of the pseudospins. This ratio of $\langle \tau_q^2 / \tau \rangle$ can be considered as the effective correlation time of the order parameter *P*[25] with the non-interacting parameter τ . The temperature dependence of the damping constant Γ_{sp} for the pseudospin-phonon coupled model has been obtained [31] in the form of [25,26].

$$\Gamma_{sp} \approx A \left(1 - P^2 \right) \ln \left[\frac{T_C}{T - T_C (1 - P^2)} \right]$$
⁽²⁾

which we express as

$$\Gamma_{sp} = \Gamma'_0 + A' \left(1 - P^2 \right) \ln \left[\frac{T_C}{T - T_C (1 - P^2)} \right]$$
(3)

where Γ'_0 is the background damping constant (linewidth), A' is a constant and T_C denotes the transition temperature.

The pseudospin-phonon coupling which causes the phonon frequencies shifted, has also been studied [32] since the shift in the phonon frequency is proportional to the order parameter so that the critical broadening occurs due to the energy fluctuation of the phonon mode [25]. This gives rise to the energy-fluctuation model with the damping constant

$$\Gamma_{SP} = \Gamma_0 + A \left[\frac{T(1 - P^2)}{T - T_C(1 - P^2)} \right]^{\frac{1}{2}}$$
(4)

where Γ_0 is the background damping constant and A is also a constant, as before. Including the soft mode-hard mode interaction, the damping constant strongly depends on the temperature [33] and with the anharmonic interactions for a soft mode frequency in the form

$$\omega_{\rm s} = \omega_0 (T_{\rm C} - T)^{\frac{1}{2}} \tag{5}$$

the damping constant can be expressed [25] as

Download English Version:

https://daneshyari.com/en/article/1408668

Download Persian Version:

https://daneshyari.com/article/1408668

Daneshyari.com