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a  b  s  t  r  a  c  t

In  this  paper  we  propose  different  classes  of  isotropic  microstructured  media  with  tunable  Poisson’s
ratio.  The  elastic  periodic  systems  are  continuous  porous  media  and  two-  and  three-dimensional  lattices.
The  microstructural  parameters  can  be  tuned  in  order to have  an  effective  Poisson’s  ratio  equal  to  zero.
The  connection  between  microstructural  parameters  and effective  properties  is shown  in  detail  both
analytically  and  numerically.
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1. Introduction

The effective behavior of a material depends on the inter-
nal structure that is possessed by the material at different scales
(see, for example, [1,2]). The capability to design different micro-
structures can lead to extreme constitutive properties, that cannot
be achieved by naturally occurring materials. In the last decades
the design of new microstructured media has been accompanied
by new technologies in the production of artificial materials, such
as 3D printing, 3D laser and multiphoton lithography, with possi-
ble advanced applications for ceramic materials, as shown by Bauer
et al. [3] and Jang et al. [4].

In the present paper we are interested in the design of new
microstructures, that can guarantee a Poisson’s ratio equal to zero.
The purpose of this choice is in the possibility of ‘decoupling’ the
deformation mechanism in different directions, so that when a
material is stressed in one direction it does deform only in the
direction of the load, but not in the orthogonal directions. Another
feature of interest is the design of isotropic materials, so that the
‘decoupling deformation’ mechanism does not depend on the direc-
tion of the application of the load.
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For isotropic materials constitutive stability limits the Poisson’s
ratio � between −1 and 0.5. While negative values of the Pois-
son’s ratio are theoretically possible, most of the naturally occurring
materials show positive �. Love [5] mentioned materials with a
negative Poisson’s ratio, which are named auxetic after Evans [6].
Extended reviews of existing auxetic models can be found in [7–10].
There are very few examples of materials with null Poisson’s ratio.
A naturally occurring material with a Poisson’s ratio close to zero
is cork [11], while a three-dimensional spongy graphene and a
nanoparticle multilayer have been proposed by Wu  et al. [12] and
by Nguyen et al. [13], respectively, as artificial systems with � = 0.
Materials with null Poisson’s ratio are very useful for sealing [14]
and biomedical applications, such as scaffolds in tissue engineering
[15].

Here, we present different classes of microstructured materials:
a porous continuum and different classes of lattices. The topology of
the microstructures assure an isotropic behavior at least within the
linear range of the stress-strain response curve of the material. The
effective behavior can be tuned by modulating the microstructural
parameters. The microstructures are simple and can be easily pro-
duced with existing technologies. The paper is organized as follows.
In Section 2 we  present the porous medium and we give evidence
of the effect of the size and of the relative inclination of the pores
on the effective properties. In Section 3 we propose different lattice
models, namely a two-dimensional lattice with a hexagonal and a
triangular microstructure and a three-dimensional body centered
cubic system. In the plane models the effective properties are given
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Fig. 1. (a) Hexagonal pattern of the holes in the two-dimensional ceramic struc-
ture; (b) illustration of a single hole; (c) representation of the elementary cell of the
structure.

analytically, while for the three-dimensional lattice the problem is
analyzed numerically. For all the elastic systems analyzed we show
the design of isotropic media with Poisson’s ratio equal to zero. Final
considerations conclude the paper.

2. A continuous porous model

We  consider a perforated ceramic sheet, which can be designed
such that it exhibits a null Poisson’s ratio. The holes are disposed
in a hexagonal arrangement as sketched in Fig. 1a, where � is the
angle measured from the normal to the hexagon side and l is the
hexagon side length. Each hole is made of a rectangle of length a,
ending with two  semicircles of diameter b, as shown in Fig. 1b. The
structure is formed by repetitive cells, one of which is drawn in
Fig. 1c.

We  assume that the matrix is made of magnesium oxide,
which is used in several engineering applications for its excel-
lent performance at high temperatures, resistance to corrosion and
transparency to infrared light. The matrix is characterised by a
Young’s modulus Em = 300 GPa, a Poisson’s ratio �m = 0.36 and a
yield stress �y = 160 MPa. The elastic modulus and Poisson’s ratio of
the homogenised structure, consisting of both the matrix and the
holes, will be indicated as E and �, respectively.

We  note that the hexagonal disposition of the holes makes the
medium isotropic in the plane (see [16]). As a consequence, the
constitutive properties of the perforated sheet can be evaluated by
loading or stretching the structure in only one direction.

2.1. Finite structure

We  start by analysing a perforated sheet of finite dimensions.
The structure has a square shape of side L = 200 mm on the plane
x–y, as shown in black color in Fig. 2a, with a thickness t = 5 mm
in the z direction. The dimensions of the microstructure are the
following: l = 9.0 mm,  b = 1.0 mm,  a = 0.765 l = 6.9 mm and � = 75◦.

We determine the homogenised properties of the perforated
sheet by employing a finite element model developed in Comsol
Multiphysics®. We  use a mesh of around 5 × 105 triangular ele-
ments, which is refined near the holes. We  impose zero horizontal
displacements at the left boundary and apply a horizontal displace-
ment of 0.01 mm on the right boundary.

The deformed configuration in shown in Fig. 2a (in the figure,
the scale factor for the displacement is equal to 2000). The colors
indicate the values of the von Mises stress, which are detailed on

the right of the figure. We point out that the maximum value of the
von Mises stress, detected near the holes, is well below the yield
limit �y of the matrix. From Fig. 2a it is apparent that the perforated
sheet does not contract nor expand laterally as it is stretched, hence
it has a null value of the Poisson’s ratio.

In order to precisely compute the homogenised Poisson’s ratio
and Young’s modulus of the porous structure, we refer to a square
area of side 100 mm in the central part of the model. This area is far
enough from the boundaries to neglect the boundary layer effects
and it is large enough to contain a sufficient number of elementary
cells. In this area, we determine the average normal stresses �̄xx and
�̄yy and the average axial strains ε̄xx and ε̄yy. The homogenised Pois-
son’s ratio and elastic modulus are calculated from the following
expressions:

� = �̄yy ε̄xx − �̄xx ε̄yy

�̄xx ε̄xx − �̄yy ε̄yy
, (1)

E = �̄2
xx − �̄2

yy

�̄xx ε̄xx − �̄yy ε̄yy
. (2)

We obtain � = −0.00156 ≈ 0 and E = 81.3 GPa. The Young’s modulus
of the porous structure is obviously smaller than that of the matrix
for the presence of the holes.

If the orientation angle � is modified while keeping the length
of the holes a fixed, the behavior of the perforated sheet can be
affected significantly. For instance, if � = 0◦ the porous structure
exhibits a positive Poisson’s ratio (see Fig. 2b). On the other hand, if
the value of � is not changed whereas a is increased, the Poisson’s
ratio of the medium becomes negative (see Fig. 2c). The deforma-
tions of the porous structure under stretching and compression in
the three different cases investigated in Fig. 2 are better illustrated
in the videos accompanying this paper (see Video 1–Video 3 in the
Supplementary Material).

2.2. Periodic structure

Now we  assume that the perforated sheet is of infinite extent,
so that we can study a single elementary cell with periodic condi-
tions at the boundaries. We determine the homogenised properties
of the cell by applying a macroscopic uniaxial strain ε̄xx = 10−4,
which generates local stresses below the yield limit. Accordingly,
the periodic conditions are given as follows (refer to Fig. 1c):

u|BC = u|AD + ε̄xx

√
3 l, v|BC = v|AD, u|CD = u|AB,

v|CD = v|AB. (3)

In the formulae above, u and v are the horizontal and vertical com-
ponents of the displacement field, respectively. In order to compute
the average values of the normal stresses �̄xx and �̄yy, we build a
finite element model in Comsol Multiphysics®, which has a very fine
mesh with around 25,000 triangular elements. Then, we  calculate
the homogenised Poisson’s ratio � and Young’s modulus E from Eqs.
(1) and (2), respectively. We find � = 0.00132 ≈ 0 and E = 83.1 GPa,
which are very close to the values obtained for the finite struc-
ture (the small discrepancies are due to the boundary layer effects).
The same results are derived by applying a macroscopic uniaxial
strain ε̄yy = 10−4 or a macroscopic shear strain ε̄xy = 10−4, since
the medium is isotropic in the plane.

The periodic elementary cell is used to perform a parametric
study on the geometrical and constitutive properties of the struc-
ture. For instance, it is interesting to investigate the effects of the
orientation angle � on the behavior of the medium. To this aim, we
fix the elastic constants of the matrix (Em = 300 GPa, �m = 0.36) and
we determine – for different values of the orientation angle � – the
ratio a/l which yields a null Poisson’s ratio. The outcomes are shown
in Fig. 3a by the circles, while the squares represent the limit values
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