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a  b  s  t  r  a  c  t

Mullite-based  ceramic  foams  with  bulk densities  as  low  as  0.4  g/cm3, porosities  between  49  and  88%  and
average  foam  cell  sizes  in  the  range  100–320  �m  are  fabricated  by  direct  foaming  from  suspensions
containing  wheat  flour  and  partial sintering  at 1600 ◦C. Stereology-based  image  analysis  is  used  to
determine  a complete  set  of  global  microstructural  descriptors,  i.e.  the  porosity  from  foam  cells  (8–88%),
interface  density,  mean  curvature  integral  density  and  the  related  pore  size  measures  (mean  chord  length
and Jeffries  size).  Elastic  constants  are  determined  via  impulse  excitation  (Young’s  moduli  2.3–21.4  GPa,
shear  moduli  0.9–8.8 GPa,  bulk  moduli  1.5–12.9  GPa,  Poisson  ratios  0.193–0.234).  Elastic  moduli  obey  the
power-law  prediction  (Gibson–Ashby  relation  for open-cell  foams)  for foams  with  porosities  higher  than
70%,  but  for  lower  porosities  they  are  significantly  lower,  due  to concave  pores  in the  partially  sintered
matrix.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Mullite is a major crystalline phase in many silicate ceramics
and refractories and its properties are well investigated [1–3]. Its
high melting point of more than 1800 ◦C makes mullite and mullite-
based ceramics highly refractory. On the other hand, the thermal
conductivity of mullite is rather low, and thus in combination with
a sufficiently high porosity, mullite ceramics and mullite-based
refractories are ideal candidates for high-temperature thermal
insulation purposes. Introducing porosity into mullite and mullite-
based ceramics reduces the heat capacity [2], while the thermal
expansion behavior [3] remains essentially unaffected. It is clear,
however, that introducing porosity decreases also the mechanical
properties of mullite and mullite-based materials, e.g. strength.
On the other hand, a decrease of the elastic moduli, e.g. Young’s
mo-dulus, can be an advantage from the viewpoint of thermal
shock resistance, because the porosity dependence of the Young’s
mo-dulus is always steeper than that of the thermal conductivity
[4], so that the influence of porosity on the material properties
and beha-vior is rather complex. While the strength and thermal
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conductivity of porous mullite materials have been investigated by
other authors [5,6], a systematic work on elastic properties seems to
be lacking so far, and the present work is an attempt to fill this gap.

There are many ways to prepare porous mullite ceramics [5–10],
and in many of these processes starch plays a key role. For example,
starch consolidation casting with modified potato starch has been
used for preparing porous mullite ceramics with porosities in the
range 35–60% [7], while native cassava, corn and potato starch
have been used in combination with a novel “sub-gelatinization
route” (i.e. by preheating a starch-containing ceramic suspension
at a temperature below the onset temperature for gelatinization) or
a “mixing route” (i.e. by mixing ungelatinized native and previously
gelatinized starches) to obtain mullite ceramics with porosities in
the range 39–64% [8,9]. Also a route using cold-water-soluble starch
has been proposed [10]. In all cases the pore size is closely related
to the original size of the starch granules.

In this paper we apply a recently developed technique [10]
to produce highly porous mullite ceramics with porosities that
significantly exceed the aforementioned values. Also this technique
is based on a starch product, but in contrast to the aforementioned
methods it consists in the direct foaming of a ceramic suspension
with wheat flour. Since the foaming step in this technique occurs
before the casting step, it can be called an ex-situ direct foaming
technique (in contrast to in-situ direct foaming, for example in
the case of biological foaming using yeast, where the foaming
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step occurs after casting inside the mold [12,13]). In previous
work this method of ex-situ direct foaming using wheat flour
has been successfully used for alumina [11], but its application
to mullite is new. In this paper we show that the porosity and
other microstructural characteristics of mullite-based ceramics can
be controlled via the shaking time. In addition to optical and
scanning electron micrographs, the microstructure is characterized
via the mass-to-volume ratio (bulk density), stereology-based
image analysis and mercury porosimetry, and the elastic properties
are characterized via impulse excitation.

2. Theoretical

2.1. Stereology-based image analysis

The systematic quantitative description of the microstructure
of porous materials by microcopic image analysis requires the
determination of global descriptors. In particular, a complete set of
descriptors is given by three parameters, viz. the porosity (volume
fraction of pores), the interface density (pore surface per unit
volume), and the mean curvature integral density. For a systematic
account of the procedures to determine these quantities the reader
may  refer to our previous papers in this field [14,15]. Therefore,
for the purpose of the present paper, only a very brief summary is
given here:

The most efficient method to determine the porosity (volume
fraction of pores) is via the point fraction of grid points falling on
a pore section. According to the Delesse–Rosiwal law, the volume
fraction of pores (porosity) � = Vv is then given by

�= Vv= AA = LL = PP (1)

(in standard stereological notation [14,15]). The interface density
SV is determined from the number of intersection points between
grid lines and the pore section outlines, related to the length of the
grid lines, via the relation

SV = 2PL. (2)

In a similar way, in the case of convex pores, the mean curvature
integral density MV is determined from the number of pore sections
per unit area NA

MV = 2� × NA. (3)

Note that all these methods are counting techniques, that means
it is not necessary to measure lengths or areas. Therefore they can
be applied to unbinarized and even low-contrast images. Another
advantage of counting techniques is that the standard error for the
volume fraction of pores (porosity) can be predicted before the
measurement without any empirical parameter, and even in the
case of interface density and mean curvature integral density good
estimates of the standard error are available [14]. That means, it is
possible to estimate in advance the number of counts necessary to
achieve a desired precision, while the observed standard errors can
be calculated according to usual statistics from standard deviations
after the measurement. For more details and explicit equations the
reader may  refer to our previous papers [14,15].

From both the interface density SV (or the quantity PL) and
the mean curvature integral density MV (or the quantity NA)
size measures can be derived, viz. the mean chord length (mean
intercept length)

L = 4�
SV

= 4VV

SV
= 2�

PL
= 2PP

PL
(4)

and the Jeffries size
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The corresponding standard errors of the two  size measures
have to be calculated via the law of error propagation, because both
the volume fraction (porosity) � and the parameters SV and NA have
their own  errors [14,15].

2.2. Determination of elastic constants via impulse excitation

The determination of elastic constants via impulse excitation
is based on the measurement of resonant frequencies. In the case
of rod- or bar-shaped specimens it is possible to record damped
oscillations of flexural vibrations and thus to measure flexural
resonant frequencies, from which one elastic constant, the Young’s
modulus, can be determined [16]. However, even in the simplest
case (isotropic materials) two  independent elastic constants are
needed for a full description of the elastic behavior [17].

With disk- or plate-shaped specimens it is possible to determine
two elastic constants, because when the specimen fixation is
appropriate, two  types of vibrations can be excited, viz. flexural and
anti-flexural vibrations. Of course each of these vibrations has its
own  resonant frequency. From the ratio between the flexural and
the anti-flexural frequency it is possible to calculate the Poisson
ratio, using a numerical solution by Glandus [18]. Then, using the
thus determined Poisson ratio, two  values of the Young’s modulus
can be calculated, one from the resonant frequency of the flexural
vibration f1 and one from that of the anti-flexural vibration f2.
As long as the ratio of the flexural and anti-flexural resonant
frequencies is in the range 1.35 ≤ f1/f2 ≤ 1.90, the Poisson ratio
of sufficiently thin circular discs (with diameter D, thickness t and
aspect ratio D/t ≥ 4) can be determined directly from the measured
resonant frequencies, using tabulated values [16]. As soon as the
Poisson ratio is known, two values of the Young modulus can be
calculated from the resonant frequencies of the flexural and anti-
flexural vibration, respectively, via the relation

Ei = 3 × � × D4 ×
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where fi is the frequency (with i = 1 for flexural and i = 2 for anti-
flexural vibrations), m the specimen mass, � the bulk density,
and Ci a geometric factor (specimen shape coefficient) for the
respective frequency that is tabulated for aspect ratios larger than
4 (up to infinitely thin discs) [16]. The two Young’s modulus values
thus calculated should be very close, and the arithmetic mean
of them is taken to be the final value of the effective Young’s
modulus. Of course, as soon as both the Poisson ratio and the
Young’s modulus are known, all other elastic constants of isotropic
materials, including shear and bulk moduli, can be calculated via
elasticity standard relations [17].

2.3. Theoretical predictions for the porosity dependence of elastic
constants

The porosity dependence of elastic constants has been treated
in many previous papers [19–28], and therefore only a shortcut
directly related to the present work is given here: In contrast to the
Poisson ratio, for which no micromechanical bounds are available
(only the thermodynamic bound −1 < � < 0.5) [19], the elastic
moduli M (in the sequel standing for E, G or K) of porous materials
are all subject to micromechanical upper bounds. For all these
moduli the upper bound in the case of porous materials is [20]

Mr = M

M0
≤ 1 − �, (7)
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