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We show that the position of the de Gennes minimum in scattering spectra, where the dynamics of liquids slow
down, is given by a hard-sphere expression for a range of mono-atomic liquids that crystallize in a close packed
structure. This expression relates the position of the minimum to the number density of the liquid, without any
adjustable or unknown parameters. We argue that this implies that a liquid can be viewed as a close packed
structure of the cages that represent the confinement of atoms by their neighbors. We further show that some
metals deviate from this expression, namely those metals that crystallize in a structure that is not close packed.
Our expression should prove very useful in identifying what liquids to study in inelastic scattering experiments
given that deviations fromnormalfluid behavior can already be predicted based on the peak position of the static
structure factor.
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1. Introduction

The equations of hydrodynamics tell us how long length scale
fluctuations in liquids decay back to equilibrium. These equations tell
us how long fluctuations last for, and how fast they can propagate
through the liquid, or how quickly they diffuse away from the point of
origin. All this is captured in the Rayleigh-Brillouin triplet that is visible
in light scattering experiments [1].

When photons, or neutrons for that matter, are scattered by a
liquid, they can create or absorb a sound wave in an inelastic
scattering event, or they can probe the diffusion of particles in a
quasi-elastic event. The former shows up as two peaks in the
scattered intensity located at energy transfers corresponding to
ℏcsq, with cs the speed of propagation of sound waves and ℏq the
amount of momentum transfered to the liquid [1]. The wavenumber
q is related to the probing wavelength λ by q=2π/λ. The width, in
energy, of these sound modes increases quadratically with q in the
hydrodynamic regime, similar to the q-dependence of the width of
the quasi-elastic feature.

Liquids can also support fluctuations on shorter length scales [2–4],
an example of which is shown in Fig. 1. The shorter the length scale of
the fluctuation, the more energy it will cost to create. The extreme
case would be a fluctuation of wavelength λ=2davg (davg being the
average interatomic separation) where, essentially, we are looking at
a fluctuation consisting of a particle next to a hole. Clearly, creating
such a hole would be very costly in energy. In this range of
wavenumbers, between the hydrodynamic regime and the peak of
the dispersion, the width of the excitations increases approximately
linearly with q [3–5].

When the wavelength of the fluctuation is decreased even further,
the cost in energy actually goes down again, until there is a minimum
in the regionwhere thewavelength corresponds to the interatomic sep-
aration davg. When we probe the liquid on this length scale, by transfer-
ring an amount of momentum to it given by qmin=2π/davg, we find that
fluctuations take longer to decay. This is known as the de Gennes
narrowing [6], or structural slowing down; in scattering experiments
we observe that the overall width (in energy) of the spectra reaches a
local minimum [1]. Intuitively this all makes perfect sense: when we
try to create a density disturbance of a wavelength corresponding to
the natural length scale of the liquid, it would cost a minimum amount
of energy. Conversely, such fluctuations would last for a relatively long
time since we are actually probing individual particles locked up in a
cage of their neighbors.

The de Gennes region has received extra scrutiny since this is the
region where sound modes can cease to propagate, and where the
halfwidths of neutron and X-ray scattering spectra follow hard-
sphere predictions [4]. In this paper we show that the position
(in q) where de Gennes narrowing occurs can be accurately predict-
ed, for most mono-atomic liquids, by a hard-sphere relation between
the liquid number density n and the interatomic separation. Howev-
er, this hard-sphere relation does not imply a hard-sphere potential,
rather it simply reflects that the particles in a liquid collide with
their neighbors.

We also show that somemono-atomic liquids, notably Ga [7] andHg
[8], deviate from our prediction: these are the liquids that crystallize in
unusual structures. By comparing the position of the de Gennes
narrowing to the density of the liquid, it is possible to predict which
liquids will display interesting and unusual dynamics.
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2. Results

First we show the validity of our relationship between the position
of the de Gennes narrowing and the liquid density, and then we will
show how this position can be accurately approximated based on
the static structure factor S(q). The latter is useful since it allows

for a quick identification of those liquids that merit further, time-
consuming inelastic experiments.

Doing so,we demonstrate the validity of a new relationship between
a microscopic quantity that plays a key role in the dynamics of liquids
(qmin) and the macroscopic density. Doing so, we not only arrive at an
easy predictor for which liquids are bound to show unusual dynamics,
we also find support for a simple picture as to why hard-sphere
predictions are able to capture so much of the dynamics of real fluids
even when those real fluids do not interact through a potential that
(remotely) resembles a hard-sphere interaction.

We show the positions of the de Gennes minimum for a range of
fluids in Fig. 2, and list their values in Table 1. As can be seen, the depen-
dence of the positions on the number density n is such that they
increase linearly with n1/3, as expected: increasing n by a factor of
8 must lead to a decrease in the average separation by a factor of 2.
The straight line that goes through the points, and which captures the
exact linear dependence covering a factor of 10 in n, is given by

qmin ¼ 2π
davg

¼ 2π

π=ð3n
ffiffiffi
2

p
Þ

h i1=3 ¼ 6:945n1=3 ð1Þ

3. Theory

The average separation davg between particles depends on how
closely the particles are packed: themore closely the atoms are packed,
the smaller the average separation between them. Imagine we stack
cubes of side d in a simple cubic structure. In this case we would find
the separation davg between the nearest neighbor cubes to be d,
and the structure's atomic packing fraction nd3 would equal 1. Such a
packing would work well if the atoms were to cut out cubic volumes
for themselves while they jiggle around in the cages formed by the
neighbors, however, this is not likely to be the case in a fluid. The
densest packing we can have is for spheres stacked in a close packed
structure whose packing fraction equalsπ=ð3

ffiffiffi
2

p
Þ. Thus, without assum-

ing beforehand what the shape is of the volume cut out by a jiggling
atom, it seems reasonable to expect that the shortest average separation

we can expect to find in liquids is given by nd3avg ¼ π=ð3
ffiffiffi
2

p
Þ . This

reasoning leads to the estimate of Eq. (1). Intuitively it is clear that the
average separation between atoms is lower when the atoms are close
packed rather than arranged in the more open simple cubic structure.
Eq.(1) merely captures this intuition in a numerical factor.

We show in Fig. 3 the reason why an expression based on close
packed hard-spheres captures the position of the de Gennes minimum
even in cases where the atoms do not touch each other. In a liquid,
every atom carves out a little space for itself by colliding with its neigh-
bors. The higher the temperature, the more energetic the collisions and
the larger the cage the atom forms for itself. The atoms are essentially
locked up in their cages, and even when they do manage to escape
their cage, they immediately find themselves in a new cage since they
are always surrounded by their neighbors. On short length scales,
these cages form a close packed structure, since any other stacking ar-
rangement would correspond to large holes in the liquid, which is,
from an energy point of view, so unfavorable that such defects quickly
disappear. This picture also nicely captures why the details of the inter-
atomic interaction do not play much of a role in the exact position of
qmin: cages always form, and their sizes are determined by the amount
of kinetic energy available to the collision process.

4. Discussion and conclusions

Having validated Eq.(1) by comparing the length scale of the slowing
downof thedynamics of liquids to thenumber density, we now turn the
equation around in order to use it as a predictor for identifying which
liquids would merit further investigation of the dynamics when only

Fig. 1. Just as a disturbance of a wavelength λ spanning quite a few particles (smaller
spheres) can be viewed as a departure from the average density (9 atoms on average in
between the dashed lines in this figure), when we are probing the liquid on a much
shorter length scale, then the atom itself represents a departure from the average
density. This is represented by the larger spheres of diameter σ a distance davg apart. The
centers of the atoms represent regions with a density higher than average, whereas in
between the atoms the density is lower than average. The situation shown here
for the larger spheres is for the very high density case σ≈davg. Figure rendered by
Alexander Schmets.

Fig. 2. The position qmin of the de Gennes minimum for a range of mono-atomic fluids
(symbols) compared to the estimate of Eq. (1) (solid line). The details are given in
Table 1. The simple fluids (inert gases and metals) follow the prediction quite well,
whereas Hg and Ga (symbols below the line) clearly deviate from this prediction. The
latter is not entirely unexpected as these two elements do not condense into a close
packed structure. Typical errorbars on qmin are ±0.5 nm−1 (for details, see Table 1),
with the errorbars of the outliers shown explicitly.
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