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To analyze the stresses and strains generated during the solidification of glass-forming materials, stress and vol-
ume relaxationmust be predicted accurately. Although themodeling attributes required to depict physical aging
in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical
modeling approaches have been distinctly different. To determine whether a common constitutive framework
can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC)
model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used
to analyze a number of tests. A practical methodology for material characterization and model calibration is
discussed, and the structural relaxationmechanism is interpreted in the context of SPECmodel constitutive equa-
tions. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep
tests demonstrate the ability to achieve engineering accuracy andmake the SPEC model feasible for engineering
applications involving a much broader class of glassy materials.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The extensive use of glass in optics, flat panel displays and glass-
to-metal seals requires a knowledgeable way to manage the dimen-
sional changes and tensile residual stresses induced by thermal pro-
cessing. Thermal gradients, compaction and mismatches in thermal
strains generated during cooling through the glass transition can
produce unacceptable optical distortions or fractures. Although en-
gineering analyses can provide useful information for designing ro-
bust manufacturing processes, these predictions must come from
physically based material models that have been accurately calibrat-
ed and validated for the specific glasses of interest.

There are two important relaxation mechanisms that contribute to
the solidification behavior in a cooling glass. The first arises from the in-
trinsic viscoelasticity creating a fadingmemory of past deformation his-
tory that eventually locks stresses in place as the viscosity increases. The
second is associated with an on-going structural rearrangement of
atoms as the material compacts towards the meta-stable equilibrium
state of the supercooled liquid. Accurate predictions of the temporal
and spatial inhomogeneities in stresses and deformations generated
under general thermal processing environments must account for

both mechanisms. This has been discussed by Narayanaswamy [1] in
considering an analysis of the tempering process. The instant freezing
approach (elastic model), stress relaxation only (viscoelastic model)
and combined stress and volume relaxation (structural model) were
compared, and the importance of capturing both stress and volume re-
laxation was demonstrated clearly.

These relaxation phenomena are not unique to inorganic glasses.
Organic glassy thermosets physically age in a similarmanner exhibiting
both stress and volume relaxation over time. Furthermore, the basic
modeling attributes required to analyze the stresses and strains gener-
ated in a polymer transitioning from the rubbery state to the glassy
state are common to those needed to analyze the solidification of an
inorganic glass. From a modeling perspective, it would be quite attrac-
tive to be able to implement a single constitutive framework in a finite
element analysis code to predict the behavior of both material families,
requiring only different sets of input parameters.

In the present work, the nonlinear viscoelastic simplified potential
energy clock (SPEC) model [2] developed and validated for stress anal-
yses of glassy thermosets is applied to an inorganic glass. In Section 2,
the SPEC constitutive equations are summarized and compared to the
structural relaxation model developed by Narayanaswamy [3]. Key fea-
tures of the formalisms governing relaxation rates and thermal strains
are discussed including a description of the competing mechanisms
for predicting structural relaxation. Section 3 presents a coupled exper-
imental and modeling approach for calibrating the SPEC constitutive
equations and demonstrates its applicability to an inorganic sealing
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glass. The characterization data and model fitting results are presented
along with comparisons between SPEC predictions and validation data
collected fromcreep and volume relaxation tests conducted under com-
plex temperature histories. The experiments, data and model predic-
tions are discussed in Section 4 and conclusions are drawn in Section 5.

2. Theory and calculation

2.1. Linear viscoelasticity with changing time scales

Typically, stress relaxation is defined by a stress relaxation modulus
computed from the time-varying stress that results following the impo-
sition of a step strain at a fixed temperature, Tref. In the case of simple
shear, the shear stress relaxation modulus, G, is written as

G t; Tre f
� � ¼ σ xy tð Þ

Δγ

����
Tref

ð1Þ

where σxy is the shear stress and Δγ is the step change in shear strain.
For a linear viscoelastic material, the Boltzmann superposition principle
can be used to compute the contributions to the total stress from succes-
sive, multiple step strains applied at times t1, t2, and so on. In the limit,
this leads to the classic hereditary stress integral:

σ xy tð Þ ¼ H t−t1ð ÞG t−t1ð ÞΔγ1 þ H t−t2ð ÞG t−t2ð ÞΔγ2 þ…

→
Zt
0

ds G t−sð Þ dγ
ds

in the limit
ð2Þ

where H is the Heaviside step function.
Although Eq. (2) suggests a way to compute the isothermal stresses

in a viscoelastic material, it does not address the response of materials
subjected to changing temperatures. That insight was provided by the
time–temperature equivalence hypothesis of Leadermann [4]. It was
observed that for manymaterials the “shape” of the relaxation function
does not change with temperature. Instead, the function merely shifts
along the logarithmic time scale as illustrated in Fig. 1 where higher
temperatures produce faster relaxations. This observation provided a
convenient way to predict the stress relaxation modulus at different
temperatures by using a new “material time”, t* (denoted by the aster-
isk superscript). The newmaterial time is computed from the real time

using a so-called shift function, ϕ(T), or its inverse the shift factor,
a(T) = 1/ϕ(T). For constant temperatures, t* = ϕ(T) · t = t / a(T).
Using the material time and the stress relaxation modulus from a
known reference temperature, Tref, it is then possible to compute the
relaxation function at any other temperature:

G t; Tð Þ ¼ G t�; Tre f Þ:
�

ð3Þ

In the general case where temperature is changing with time, the
material time must be computed by integration:

t� ¼
Zt
0

ds ϕ T sð Þð Þ ¼
Zt
0

ds
a T sð Þð Þ: ð4Þ

It is also important to note that if the time–temperature equiva-
lence hypothesis is valid, then the overall shape of the stress relaxa-
tion function can be constructed by collecting the individual portions
of the relaxation curves measured during isothermal tests at differ-
ent temperatures and shifting them along the log time axis relative
to a selected reference temperature curve. This process defines the
shape of the underlying relaxation “master curve” at Tref as well as
the temperature dependence of the shift function/factor. Specific de-
tails are provided in Section 3.2. Schwarzl and Staverman [5] used
the term “thermorheological simple” to describe materials that be-
have in this way. The validity of the hypothesis for a given material
is readily determined by how well the shifting procedure works.

2.2. Viscoelastic model with structural relaxation

In the classical development of the linear viscoelastic response of
isotropic materials subjected to changing temperatures, the time–
temperature equivalence hypothesis of Leaderman [4] is used to con-
struct master curves governing the bulk (volumetric) and shear (dis-
tortional) relaxation behavior. The use of these master relaxation
curves, along with a material clock defining the logarithmic time–tem-
perature shifts, provides a natural means to capture the effect of tem-
perature history in modulating the rates of stress relaxation. Morland
and Lee [6] used this formalism to investigate the viscoelastic response
of thermorheologically simple materials under nonhomogeneous
temperature fields. The linear viscoelastic constitutive equations for in-
finitesimal deformations in an isotropic, thermorheologically simple
material have the tensorial form:

σ tð Þ ¼ Kg−Keq
� �Z t

0
ds f 1 t�−s�ð Þ dI1

ds
sð Þ−3

dεth
ds

sð Þ
� 	
 �

I

þ2 Gg−Geq
� �Z t

0
ds f 2 t�−s�ð Þdε dev

ds
sð Þ þ Keq I1 tð Þ−3εth tð Þf g� 

I

þ2Geqε dev
tð Þ

ð5Þ

where σ is the stress tensor, ε is the strain tensor, f1 and f2 are normal-
ized relaxation functions varying from 1 to 0 as time increases, I1 is the
trace of the strain tensor, I is the identity tensor, εth is the linear thermal
strain,ε dev is the deviatoric strain tensor, G is the shearmodulus and K is
the bulk modulus. By convention, the subscripts “g” and “eq” on the
moduli denote the instantaneous glassy and long time equilibrium
values, respectively. The first bracketed term in Eq. (5) describes the
pressure contribution to the decaying stress coming frommechanically
induced volumetric strains where the thermal strain from temperature
is subtracted from the total volume strain, I1. The second integral in-
cludes the distortional relaxation arising from shear. The remaining
elastic terms define the equilibrium pressure and shear stress state,
i.e., the stresses when the material is fully relaxed and the integrals
have vanished. When applied to the solidification of a viscous fluid
(e.g., inorganic glass), the equilibrium shear modulus is set to zero.
The material clock typically is specified through the use of a shift

Fig. 1. Plots of shear relaxation moduli at different temperatures illustrating the uniform
shape of the relaxation function and the shifting of curves on the log time axis as the tem-
perature is changed.
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