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As a pivotal domain within envelope protein, fusion peptide (FP) plays a crucial role in pathogenicity and
therapeutic intervention. Taken into account the limited FP annotations in NCBI database and absence of
FP prediction software, it is urgent and desirable to develop a bioinformatics tool to predict new putative
FPs (np-FPs) in retroviruses. In this work, a sequence-based FP model was proposed by combining Hidden

Markov Method with similarity comparison. The classification accuracies are 91.97% and 92.31%
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corresponding to 10-fold and leave-one-out cross-validation. After scanning sequences without FP
annotations, this model discovered 53,946 np-FPs. The statistical results on FPs or np-FPs reveal that FP is
a conserved and hydrophobic domain. The FP software programmed for windows environment is
available at https://sourceforge.net/projects/fptool/files/?source=navbar.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Retroviruses are enveloped RNA-containing viruses including
human endogenous retrovirus (HERV), human immunodeficiency
virus (HIV), simian immunodeficiency virus (SIV), human T-cell
lymphotropic virus (HTLV) and murine leukemia virus (MLV)
(Coffin, 1992; Rosenberg, 2010). These viruses require membrane
fusion to enter host cell cytoplasm for reverse transcription
(Sieczkarski and Whittaker, 2004). The fusion process is controlled
and executed by viral envelope glycoprotein (env) (White et al.,
2008a). Env is composed of a surface and trans-membrane (TM)
subunits respectively mediating receptor binding and virus-cell
fusion (Barnard et al., 2006). Locating at the N-terminal of TM
subunit, fusion peptide (FP) represents an absolute requirement for
the fusogenic function of retroviruses (Apellaniz et al., 2014). Upon
fusion activation, FP must insert itself obliquely into target cell
membrane to disorganize locally the structure of lipid bilayer
(Epand, 2003). The interaction of FP with target cell causes a
formation of an intermediate pre-hairpin structure which bridges
and fuses the viral and host membranes together (Apellaniz et al.,
2014). In contrast with targeting later steps in the retrovirus life
cycle, such as reverse transcription, integration and maturation of
virions, targeting membrane fusion to block retrovirus into host
cells has significant advantages for therapeutic intervention (Wolf-
Georg et al., 2010). For example, it contributes to reducing the risk
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of undesired side effects, preventing the establishment or
maintenance of latent viral reservoirs and so on (Wolf-Georg
et al., 2010). Consequently, the dependence of retrovirus on FP
during infection process and the advantages of fusion inhibitor
make FP an available and promising drug target (Wolf-Georg et al.,
2010; Miinch et al., 2007). However, classical database search tools
are inefficient to retrieve FPs in env sequences (Table 1) and
annotated FPs in online database are not sufficient for a better
understanding of FP. Thus, it is of great importance to propose a
computational model to predict new putative FPs (np-FPs). This
proposed FP model is helpful to accelerate identification of FPs in
retroviruses by reducing the sequence dataset for biochemical
experiment corroboration.

The main content of this thesis is arranged as follows. In
Section 2, four procedures taken into account for the sequence-
based FP model (Chou, 2011) will be sufficiently clarified. They are
dataset construction, protein sample representation, FP prediction
algorithm and proper evaluation methods. Then assessment
results of FP model, FP software, predicted np-FPs and statistic
hydrophobic properties about FP will be described in detail in
Section 3. Eventually, validity of FP model, FP motif and
evolutionary relationship about FP will be discussed in Section 4.

2. Material and methods
2.1. Datasets

All the retroviral protein sequences involved in this work were
collected from NCBI database (Wheeler et al., 2006) and divided
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Table 1

Comparison results between FP model and three classical database search tools.
Method np-FPs with correct positions np-FPs with wrong positions np-FPs undetected Percentage®
PSI-BLAST 16 50 51 13.68%
CS-BLAST 30 57 30 25.64%
HMMER3 39 47 31 33.33%
FP model 111 3 3 94.87%

2 The percentage of np-FPs with correct positions.

into two datasets. One benchmark dataset contains env sequences
with FP annotations so as to complete the establishment of FP
prediction model, and the other dataset includes env sequences
without FP annotations for predicting potential np-FPs.

In NCBI database, there are 124 env sequences with FP
annotations related to HERV, HIV, SIV, HTLV and MLV. After
looking over these data for reliability, 117 sequences (Table 2) meet
following criteria are qualified to be included into benchmark
dataset. The criteria stress not only env sequence to be non-
repetitive but also FP annotation to be experimentally validated
and non-suspicious. For each one of benchmark dataset, FP or non-
FP domain was considered as positive or negative sample to train
the prediction model.

Except for benchmark dataset, there are also a large amount of
protein sequences downloaded from NCBI. They are env sequences
without FP annotations (Table 2) relevant to the five retroviruses.
These sequences were prepared for predicting more np-FPs with
the proposed FP model.

2.2. Protein sample representation

Two straightforward sequential samples with mathematical
expressions were formulated in this work. They can truly reflect
the intrinsic correlations of predicted FP with inquired env
sequence. One is the observation sequence O, which was expressed
as

0 =(01,...0) o e{l,.Mite{l,..T} (1)

where o; is t-th amino acid residue of protein O,M is the number of
native amino acid types, and T is the length of inquired sequence.

The other one is the state sequence Q, which was given by
Q:(q]7”'7qT) qe € {17N}t€ {17"-7T}7 (2)

in which g, is the state of t-th residue indicating FP (q,=2) or non-
FP (q;=1), and N is the number of states.

2.3. FP prediction model

FP model predicts np-FP domain through two phases. Firstly, it
adopted HMM method (Duda et al., 2001; Bonneville and Jin, 2013)
to determine the existence and rough location of np-FP.
Subsequently, it performed similarity comparison for a more
precise np-FP. The prediction algorithm (Fig. 1) will be described in
detail as follows.

2.3.1. HMM training

Three matrixes were defined and estimated to represent HMM
model, which are A, B and II. A stands for transition probability
between states of FP and non-FP, B denotes emission probability of
the residue under a state, and I1 reflects the state distribution of
initial residue. The elements of these matrixes were computed by
Maximum Likelihood Estimate (Pfanzagl, 1994). According to FP
and non-FP annotations in sequences of benchmark dataset,
elements of A and B were respectively given by:
aij= P(q¢1=Jlq:=1) :76(%22%2% !
_c(or=k,q:=1J)

c(q:=1J)

ijef{l,..NLke{1,..M},
bj= P(o:= k|q,= j)

3)

in which c(x) is the occurrence number of event x. Locating in the
upstream of env protein containing FP domain, the initial amino
acid should be a residue with non-FP state. Thus, elements of I1
were assumed to be:

C(1fi=1&t=0
”i*{Oifi:Z&t:m “)

where t =0 represents the moment before observation and i=1 or
i=2 denotes non-FP or FP state respectively.

2.3.2. HMM decoding

Viterbi algorithm (Viterbi, 1967; David Forney, 2005) was
applied to decode the most likely sequence of hidden states with
trained HMM model A. The state sequence Q was feasible to

Table 2

The datasets and results for FP modeling and prediction.
Groups Train/test Scan

Env number? Result? Env number® np-FPs¢

HERV 19 333 39
HIV 60 10-fold CV: 168,049 43,139
SIV 14 Acc=91.97%, Se=97.16%, Sp =99.99% 18,381 9,908
HTLV 8 LOOCV: 1048 794
MLV 16 Acc=92.31%, Se =97.19%, Sp =99.99% 107 66
Total 117 187,918 53,946

¢ The env sequences with FP annotations.

b The env sequences without FP annotations.

¢ The new putative FPs predicted by the model.

4 The performance tested by two cross-validation methods.
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