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We consider the elastic effect of clusters and propose a size misfit strengthening model. Our approach is similar to solute strength-
ening, where the size misfit of clusters is assumed to be the sum of elementary atomic misfits. The proposed model is compared to the
coherency strengthening model, and the results indicate that our model is applicable to clusters �<1 nm in diameter. The prediction
of the model is reasonably consistent with the reported experiments of aluminium alloys.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Solute clustering is observed widely in many Al
alloys [1–6], and contributes to the strength of alloys,
even dilute alloys [7,8]. Cluster hardening was originally
proposed in research on aged Al–Cu–Mg alloys [2,9,10],
which concluded that the rapid early hardening during
ageing is due to solute clustering rather than Guinier–
Preston–Bagaryatsky zone formation. Recent applica-
tion of atom-probe tomography (APT) provides more
quantitative evidence of solute clustering related to
hardening [4,6]. Ringer et al. qualitatively interpreted
cluster hardening as “an exaggerated form of solid solu-
tion strengthening”, i.e. arising from solute–dislocation
interaction involving a chemical mechanism [2,11].
Recently, researchers have attempted to quantitatively
explain the hardening effect of clusters. Areal glide sim-
ulation [12] suggests that the spatial distribution of weak
obstacles (e.g. solutes) does not affect the strength. The
strengthening effect of clusters observed experimentally
must be due to chemical and/or elastic effects, which
change the obstacle strength. A simplified model—orig-
inally proposed for precipitates (or Guinier–Preston
(GP) zones) [13]—has been adapted for modulus hard-
ening of co-clusters (containing various elements) [4].
It is applicable to large clusters but oversimplified for
small ones. An analytical model for cluster strengthen-
ing due to short-range order has been proposed for sol-
ute dimers in Al–Cu–Mg and Al–Mg–Si [4,5]. The order

energy was estimated by differential scanning calorime-
try (DSC). Marceau et al. [14] characterized the size dis-
tribution of clusters and estimated the contribution of
cluster strengthening by using an areal glide model,
where the strength of each cluster is assumed to be pro-
portional to its radius on the glide plane. Proville et al.
[15] simulated the interactions between solute pairs and
the Shockley partial dislocations in the core region using
molecular dynamics, and proposed a hardening model
for Ni–Al, which has a lower stacking fault energy than
the Al alloys considered here.

Previous theoretical investigations are often limited to
solute dimers or large clusters, and the elastic effect has
not been considered. In the present work, a model consid-
ering the elastic effect of small clusters is proposed to esti-
mate the contribution of clusters to the yield stress.

A misfit strain field arises due to the size misfit of sol-
ute in matrix, which is the main strengthening effect of
solutes. Clusters would cause a similar strain field as sol-
utes. An approach similar to solute strengthening theory
is proposed to estimate the strength contribution due to
the size misfit of clusters. According to elasticity theory,
the interaction energy of a substitutional atom with an
edge dislocation is [16]:

DE ¼ 3
1� t
1þ t

rhDV : ð1Þ

The parameter rh is the hydrostatic stress induced by
an edge dislocation, m is the Poisson’s ratio of Al, and
DV is the volume misfit of a solute, i.e. the volume chan-
ged by the substitution for a host atom. DV = 3Xd,
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where X is the atomic volume of the host lattice, and d is
the size misfit parameter (or lattice misfit). The interac-
tion force on the dislocation in the glide direction y is:

f ¼ � dDE
dy
¼ �3

1� t
1þ t

DV
drh

dy
: ð2Þ

The maximum interaction force between a dislocation
and a solute atom, fm, is achieved at a certain relative
position of the solute and the dislocation. An approximate
equation of fm is given by | fm/2TL | � 0.181d [17], if the
contribution from modulus misfit is neglected. TL is the
line tension of an edge dislocation, assumed to be constant
here (TL = Gb2/2, where G is the shear modulus of the
host lattice and b is the Burgers vector). Solid-solution
hardening is usually discussed in terms of either Flei-
scher–Friedel theory or Mott–Labusch theory. If clusters
are treated as point obstacles and exist in a low density,
the Fleischer–Friedel model can be used. The increment
of the critical shear stress in this model, DsF, is [16]:

DsF ¼ ð2T LÞ�1=2b�2f 3=2
m c1=2

p ; ð3Þ

where cp is the planar concentration of obstacles, which
is proportional to the total solute concentration c0.
Thus, Eq. (3) has only two variables, i.e. fm and c0,
and fm is proportional to DV, since DV is a constant
as deduced from Eqs. (1) and (2). Eq. (3) can be simpli-
fied as

DsF ¼ Af 3=2
m c1=2

0 ¼ A1DV 3=2c1=2
0 or DsF

¼ 0:12bðGdÞ3=2ðc0=2T LÞ1=2
; ð4Þ

where A and A1 are constants. The equations above are
valid for solute strengthening at 0 K, and will be
adapted for clusters in the present work. At first, the
monodispersion of clusters is assumed for simplicity,
i.e. each cluster is identical in composition and size, con-
taining the same number of atoms, i. The polydispersion
of clusters will be discussed later. The small clusters are
treated as point obstacles similar to mono atoms, since
the size of a small cluster is of the same order as the Bur-
gers vector. The volume misfit of a small cluster is
assumed to be approximately the sum of misfits of all
the atoms in the cluster, i.e. DV cl �

P
iDV i. If the cluster

contains like solute atoms, the volume misfit of a small
cluster i is approximately proportional to the number of
atoms i, i.e. DV cl � i � DV . Thus, the maximum resistive
force of an i-cluster is approximately:

fcl;m � i � fm: ð5Þ
The concentration c0 in Eq. (4) is replaced by the

cluster concentration, which equals c0/i, when all the sol-
utes form i-clusters. Eqs. (4) and (5) give:

Dscl;F ¼ Af 3=2
m c1=2

0 i ¼ iDsF : ð6Þ
Eq. (6) suggests that the strengthening effect increases

linearly with the number of atoms per cluster, as a result
of the relative weight of the powers of fm and c0 in Eq.
(3).

The stress contribution will be reduced significantly
at elevated temperatures due to the atomic thermal
motion. The temperature dependence can be described
by [18]:

DsðT Þ ¼ Ds0 exp � kT
0:51Eb

ln
_e0

_e

� �
; Eb � A2DV 2=3c1=3;

ð7Þ
where Ds0 is the increase in critical shear stress at 0 K,
Eb is the energy barrier, and A2 and _e0 are constants.
The thermal activation energy is adapted for clusters as:

Ecl;b � A2DV 2=3
i c1=3

i ¼ i1=3Eb: ð8Þ
The increase in cluster size increases the thermal acti-

vation energy, leading to reduced thermal effect and
more retained yield stress at elevated temperatures.

The strengthening of polydisperse clusters can be calcu-
lated in a similar approach as for monodisperse clusters,
using the superposition law for multicomponent hardening.
The concentration ci is defined as the atomic concentration
of solute atoms that enter each i-cluster, including the mon-
atomic solutes i = 1. The concentration of i-clusters then
equals ci/i. The total solute atomic concentration, including
the atoms in the small clusters, is the sum of the solute
atoms in all the clusters ci, i.e. c0 ¼

P
ici, i = 1, 2, 3, . . ..

The cluster distribution can be measured using atom probe
tomography [14]. For the time being, the distribution of
atoms in clusters, ci, is simply assumed to fit a Poisson dis-
tribution. The mean value of i determines the Poisson dis-
tribution of ci. The superposition law is widely described
as Dsq

cl ¼
P

iDsq
i , 1 6 q 6 2 [19]. This equation gives the

upper and lower limits of superposition when q = 1 and
q = 2 respectively. Labusch [20] obtained q = 1.5 for obsta-
cles of the same number density but different strengths [21],
which is often used in literature [22]. Recently, the superpo-
sition law has been re-examined by 2-D areal glide simula-
tions [23], which indicates that q = 1.5–2 could fit most of
the cases. The ratio of cluster strengthening to monatomic
solute strengthening is plotted as a function of the mean
number of atoms per cluster in Figure 1 with q = 1.5 and
2. The strengthening due to polydispersed clusters is pro-
portional to the mean number of atoms per cluster in a lin-
ear law, similar to that of monodispersed clusters. The
superposition power q influences the calculation, as shown
in Figure 1. However, the strengthening caused by polydis-
perse clusters is no less than the strengthening by monodis-
perse clusters of the same mean size.

One basic assumption in the present model is that the
volume misfit of a cluster increases linearly with the
number of atoms per cluster. Research on the lattice
parameter in cubic intermetallics and solid solutions
suggests that the volume of intermetallics equals
approximately the sum of solute atomic volumes up to

Fig. 1. The ratio of cluster strengthening to mono-atom solute
strengthening as a function of the mean number of atoms per cluster
when q = 1.5 and 2.
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