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a b s t r a c t

A major theme in constraint-based modeling is unifying experimental data, such as biochemical infor-
mation about the reactions that can occur in a system or the composition and localization of enzyme
complexes, with high-throughput data including expression data, metabolomics, or DNA sequencing.
The desired result is to increase predictive capability and improve our understanding of metabolism.
The approach typically employed when only gene (or protein) intensities are available is the creation
of tissue-specific models, which reduces the available reactions in an organism model, and does not
provide an objective function for the estimation of fluxes. We develop a method, flux assignment with
LAD (least absolute deviation) convex objectives and normalization (FALCON), that employs metabolic
network reconstructions along with expression data to estimate fluxes. In order to use such a method,
accurate measures of enzyme complex abundance are needed, so we first present an algorithm that
addresses quantification of complex abundance. Our extensions to prior techniques include the capabil-
ity to work with large models and significantly improved run-time performance even for smaller models,
an improved analysis of enzyme complex formation, the ability to handle large enzyme complex rules
that may incorporate multiple isoforms, and either maintained or significantly improved correlation
with experimentally measured fluxes. FALCON has been implemented in MATLAB and ATS, and can be
downloaded from: https://github.com/bbarker/FALCON. ATS is not required to compile the software, as
intermediate C source code is available. FALCON requires use of the COBRA Toolbox, also implemented
in MATLAB.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

FBA (flux balance analysis) is the oldest, simplest, and perhaps
most widely used linear constraint-based metabolic modeling
approach (Shestov et al., 2013; Lewis et al., 2012). FBA has become
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extremely popular, in part, due to its simplicity in calculating
reasonably accurate microbial fluxes or growth rates (e.g. Schuetz
et al., 2012; Fong and Palsson, 2004); for many microbes, a simple
synthetic environment where all chemical species are known
suffices to allow proliferation, giving fairly complete constraints
on model inputs. Additionally, it has been found that their bio-
logical objectives can be largely expressed as linear objectives of
fluxes, such as maximization of biomass (Schuetz et al., 2012).
Neither of these assumptions necessarily hold for mammalian
cells growing in vitro or in vivo, and in particular the environment
is far more complex for mammalian cell cultures, which have to
undergo gradual metabolic adaptation via titration to grow on syn-
thetic media (Pirkmajer and Chibalin, 2011). Recently, there have
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been many efforts to incorporate both absolute and differential
expression data into metabolic models (Blazier and Papin, 2012).
The minimization of metabolic adjustment (MoMA; Segrè et al.,
2002) algorithm is the simplest metabolic flux fitting algorithm,
and it can be extended in order to allow the use of absolute
expression data for the estimation of flux (Lee et al., 2012), which
is the approach taken in this study. A different approach for using
expression in COBRA, also very simple, is E-flux, which simply uses
some function of expression (chosen at the researcher’s discretion;
typically a constant multiplier of expression) as flux constraints
(Colijn et al., 2009). Despite this surprising simplicity, the method
has found many successful applications, but the user-chosen
parameter and use of expression as hard constraints is, in our
opinion, a detraction, and others have had better results taking an
approach similar to Lee et al. (2012) (Bogart and Myers, in press).

The MoMA method, framed as a constrained least-squares opti-
mization problem, is typically employed to calculate the flux vector
of an in silico organism after a mutation by minimizing the distance
between the wild-type flux and the mutant flux. The biological intu-
ition is that the organism has not had time to adapt to the restricted
metabolic capacity and will maintain a similar flux to the wild-type
(WT) except where the perturbations due to the mutation dictate
necessary alterations in fluxes (Shlomi et al., 2005). Suppose a is
the WT flux vector obtained by an optimization procedure such as
FBA, empirical measurements, or a combination of these. For an
undetermined flux vector v in a model with N reactions the MoMA
objective can be expressed as

minimize
N∑

i=1

(vi − ai)
2 (1)

subject to the stoichiometric constraints Sv = 0 where v =
(v1, . . ., vN)T and S is the stoichiometric matrix (rows correspond
to metabolites, columns to reactions, and entries to stoichiomet-
ric coefficients). Constant bounds on fluxes are often present, such
as substrate uptake limits, or experimental Vmax estimates, so we
write these as the constraints vlb �v�vub. The objective may be
equivalently expressed in the canonical quadratic programming
(QP) vector form as min. (1/2)vTv−aTv. This assumes that each
ai is measured, but it is also possible and sometimes even more
useful to employ this objective when only a subset of the ai are mea-
sured (if ai is not measured for some i, then we omit (vi − ai)

2 from
the objective). In metabolomics, for instance, it is always the case
in experiments with labeled isotope tracers that only a relatively
small subset of all fluxes are able to be estimated with metabolic
flux analysis (MFA; Shestov et al., 2013). Combining MoMA with
MFA provides a technique to potentially estimate other fluxes in
the network.

A variant of MoMA exists that minimizes the absolute value of
the difference between ai and vi for all known ai. To the best of our
knowledge, the following linear program is the simplest version of
linear MoMA, which assumes the existence of a constant flux vector
a:

minimize
N∑

i=1

di

subject to Sv = 0

vlb � v � vub

∀i : −di ≤ vi − ai ≤ di

di ≥ 0

(2)

The di are just the distances from a priori fluxes to their cor-
responding fitted fluxes. Linear MoMA has the advantage that
it is not biased towards penalizing large magnitude fluxes or

under-penalizing fluxes that are less than one (Boyd and
Vandenberghe, 2004; Shlomi et al., 2005). Additionally, linear pro-
grams are often amenable to more alterations that maintain con-
vexity than a quadratic program and tend to have fewer variables
take on small values, and it is much easier to interpret the impor-
tance of a zero than a small value (Boyd and Vandenberghe, 2004).

We wish to apply MoMA to expression data rather than flux
data, but there are two primary problems that must be tackled.
First, we must quantify enzyme complex abundance as accurately
as possible given the gene expression data. Although there is
not a one-to-one correspondence between reactions and enzyme
complexes, the correspondence is much closer than that between
individual genes and metabolic reactions. In the first part of this
work, we employ an algorithm that can account for enzyme com-
plex formation and thus quantify enzyme complex abundance.
Second, we must fit real-valued variables (fluxes) to non-negative
data (expression), which is challenging to do efficiently. To accom-
plish this, we build on the original MoMA objective, which must be
altered in several ways (also discussed in Lee et al. (2012), which
lays the groundwork for the current method). We develop auto-
matic scaling of expression values so that they are comparable
to flux units obtained in the optimization routine. This can be an
advantage over the prior method as it no longer requires the man-
ual choice of a flux and complex abundance pair with a ratio that
is assumed to be representative of every such pair in the system.
Related to this, we also implement the sharing of enzyme com-
plex abundance between the reactions that the complex catalyzes,
rather than assuming there is no competition between reactions
catalyzed by the same complex. Reaction direction assignment
enables comparison of fluxes and expression by changing fluxes to
non-negative values. We show that batch assignment, rather than
serial assignment (Lee et al., 2012) of reaction direction can greatly
improve time efficiency while maintaining or slightly improving
correlations with experimental fluxes. In addition to several of the
methods described so far, we also included in our comparison two
methods for tissue-specific modeling. In GIMME, the authors remove
reactions whose associated gene expression is below some thresh-
old, then add reactions that preclude some user-defined required
metabolic functionalities in an FBA objective back into the model,
and finally use FBA again to obtain fluxes (Becker and Palsson,
2008). The other tissue-specific method we compared with is
iMAT, which employs a mixed integer linear programming (MILP)
problem to maximize the number of reactions whose activity cor-
responds to their expression state (again using thresholds, but this
time, there are low, medium, and highly expressed genes, and only
the lowly and highly expressed genes are included in the objective)
all while subject to typical constraints found in FBA (Shlomi et al.,
2008).

Finally, we employ several sensitivity analyses and performance
benchmarks so that users of the FALCON method and related meth-
ods may have a better understanding of what to expect in practice.

2. Methods

Most genome-scale models have attached Boolean (sans nega-
tion) gene rules to aid in determining whether or not a gene deletion
will completely disable a reaction. These are typically called GPR
(gene–protein-reaction) rules and are a requirement for FALCON;
their validity, like the stoichiometric matrix, is important for gen-
erating accurate predictions. Also important are the assumptions
and limitations for the process of mapping expression data to
complexes so that a scaled enzyme complex abundance (hereafter
referred to as complex abundance) can be estimated. We address
these in the next section and have attached a flow chart to illus-
trate the overall process of mapping expression of individual genes
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