

Available online at www.sciencedirect.com

Energy Procedia 91 (2016) 517 - 527

SHC 2015, International Conference on Solar Heating and Cooling for Buildings and Industry

Cost-optimal sizing of solar thermal and photovoltaic systems for the heating and cooling needs of a nearly Zero-Energy Building: design methodology and model description

Daniele Testi, Eva Schito, Paolo Conti

BETTER (Building Energy Technique and Technology Research group), University of Pisa – DESTEC, Largo Lucio Lazzarino, 56122 Pisa, Italy

Abstract

This paper deals with the cost-optimal sizing of solar technologies for thermal and electrical needs of residential or tertiary nearly Zero-Energy buildings. The proposed design procedure is based on lifetime simulation of building loads and energy systems; therefore, according to proper cost-optimality considerations, it is possible to find the best sizing of both heat and electricity generators in the context of high-efficiency buildings (e.g. number of solar thermal and PV modules). The paper is divided in two parts. In this first part, we describe general features and principles of the methodology, together with the physical models of building-plant system. Building requirements of thermal and electrical energy are evaluated according to internal loads and external climate, while energy system operation is simulated by a full set of equations reproducing the coupled behavior of each piece of equipment. A preliminary application example referring to a nearly Zero-Energy Building is also illustrated: In the second part of the work, we will apply and discuss the overall simulation-based optimization procedure. Results show the notable benefits of the proposed design approach with respect to traditional ones, in terms of both energy and economic savings. Besides, the proposed methodology can be successfully applied in the more general framework of Net Zero Energy Buildings (NZEBs) in order to fulfill recent regulatory restrictions and objectives in building energy performances.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review by the scientific conference committee of SHC 2015 under responsibility of PSE AG

Keywords: Nearly Zero-Energy Buildings; cost-optimal design; solar thermal; photovoltaics; heat pumps; design method

1. Introduction

The design of building energy systems aims to figure out the best technological solution to match energy demand for services. A universal straightforward design procedure does not exist as any specific project has particular characteristics and objectives [1].

Nomenclature

Acronyms		b_0	incidence angle modifier coefficient for single-cover
B.O.S.	balance of system		ST collectors
DHW	domestic hot water	С	specific heat capacity
H/C	heating and cooling system	c_0	unitary installation cost
HP	heat pump	f_p	primary energy factor
PV	photovoltaic system	n	number of PV modules or ST collectors
RF	radiant floor	n _{air}	air changes per hour
ST	solar thermal system	n_{RF}	emitter exponent of the radiant floor
TS	thermal storage	S	thickness
Symbol	S	x	humidity ratio
C global cost		Greek letters	
C_0	installation cost	β_{TPV}	PV penalization factor depending on PV technology
C_{dehum}	coil characteristic coefficient	n	efficiency
COP	actual coefficients of performance in	9	angle between the beam radiation and the normal to
	heating mode		the ST collectors
COP_{id}	maximum theoretical COP in heating mode	λ	thermal conductivity
	(i.e. Carnot efficiency)	ρ	density
Ε	energy	$(\tau \alpha)_n$	transmittance-absorptance product for normal-
EER	actual coefficients of performance in	() "	incidence irradiance
	cooling mode	ϕ	time shift
EER _{id}	maximum theoretical <i>EER</i> in cooling mode	Supara	arint
	(i.e. Carnot efficiency)	superso 11	second law perometer
F_R	ST removal factor	11	second-law parameter
H_{ve}	equivalent ventilation-thermal transmittance	*	al air temperature
Isol	global irradiance at a given orientation	TOT	sumulative value at the end of project lifetime
Isol,o	extra-terrestrial global irradiance on the	101	cumulative value at the end of project metime
	horizontal surface	Subscript	
K_{RF}	RF thermal output per surface unit	CK	cooking service
K_t	hourly clearness index	LGT	lighting
NOCT	nominal operating cell temperature	OU	electric uses (household appliances, office devices)
Р	power	dehum	dehumidification
S	surface	des	design condition
T_{aqu}	aqueduct temperature	el	electrical
T_{DHW}	DHW delivery temperature	grid	electrical grid
T _{eva/cond}	effective heat exchange temperature in HP	in	inlet conditions
	evaporator or condenser	inv	electronic converter (i.e. B.O.S.)
T_{ext}	outdoor temperature	ls	losses
T_{off}	switching-off temperature	prod	production
T_{PV}	PV modules temperature	ref	reference conditions
T_{TS}	thermal storage temperature	th	thermal
U_L	ST frontal losses coefficient	w	water
U_{wf}	water-floor thermal transmittance	Ζ	indoor
UÅ	heat transmittance-surface product		
V	volume		

Download English Version:

https://daneshyari.com/en/article/1508681

Download Persian Version:

https://daneshyari.com/article/1508681

Daneshyari.com