

Available online at www.sciencedirect.com

Procedia

Energy Procedia 88 (2016) 614 - 618

CUE2015-Applied Energy Symposium and Summit 2015: Low carbon cities and urban energy systems

Microwave synthesis of simonkolleite nanoplatelets on 3D nickel foam-graphene for supercapacitor applications

S. Khamlich^{a,b,c,*}, T. Mokrani^d, M.S. Dhlamini^c, B.M. Mothudi^c, M. Maaza^{a,b}

^aUNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa

^bNanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province, South Africa

^cDepartment of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida 1710, Johannesburg, South Africa

^dDepartment of Civil and Chemical Engineering, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida 1710, Johannesburg, South Africa

Abstract

Simonkolleite nanoplatelets were deposited on 3D nickel foam-graphene (NiF-G/SimonK) by a rapid microwaveassisted hydrothermal method. Field emission scanning electron microscope (FE-SEM) of the NiF-G/SimonK electrode revealed that the SimonK nanoplatelets were evenly distributed on the surface of NiF-G and interlaced with each other, resulting in a higher electrochemical performance compared to NiF-G and NiF/SimonK. Utilizing this composite material, a supercapacitor with a specific capacitance of 836 F g⁻¹ at a current density of 1 A g⁻¹ has been achieved.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of CUE 2015

Keywords: graphene, simonkolleite, energy storage, supercapacitor;

1. Introduction

Recently, supercapacitors (SCs) have received increasing attention as a promising energy storage device [1], such as portable electronic devices and will become an attractive power solution to renewable

^{*} Corresponding author. Tel.: +2-779-044-3605.

E-mail address: skhamlich@gmail.com.

615

energy power generation [2]. Compared with conventional electrical double layer capacitors (EDLC) operating in a double layer formed on the electrode surface, which limits the specific capacitance and leads to lower energy density relative to their theoretical value, pseudocapacitors utilizing the charges accumulated during a faradaic reaction exhibit a higher capacitance (3–4 times) [3]. Up-to-date, the most attractive materials for pseudocapacitors are cheap transition metal oxides or hydroxides and conducting polymers [3]. However, they often result in compromises of rate capability and reversibility because redox kinetics is limited by the rates of ion diffusion and electron transfer [4]. To deal with the problems, attempts at novel electrode design have been extensively made, that is anchoring nanostructured active materials onto highly conductive substrates (e.g. carbon aerogels [5], conducting polymers [4], and graphene [6]) with large specific surface areas.

In these regards, we explore a new two-step approach for growing Simonkolleite (SimonK) nanoplatelets on nickel foam-graphene. The first step is to grow graphene directly on nickel foam using CVD technique, which is considered as the most effective way for fabrication of large-area and high-quality graphene films. The second is the deposition of SimonK on the as-prepared graphene-coated nickel foam by using a rapid microwave-assisted hydrothermal technique. The fabricated NiF-G/SimonK demonstrates larger specific capacitance at a higher current density.

2. Experiments and methods

2.1. Growth of graphene on nickel foam (NiF-G)

Nickel foams (Alantum, Munich, Germany), 420 g¹ m⁻² in areal density and 1.6mm in thickness, was used as 3D scaffold templates for the CVD growth of graphene. It was cut into pieces of 1×2 cm² and placed in a quartz tube of outer diameter 5 cm and inner diameter 4.5 cm. The precursor gases were CH₄:H₂:Ar. The nickel foam was annealed at 800 °C in the presence of Ar and H₂ for 20 min, before the introduction of the CH₄ gas at 1000 °C. The flow rates of the gases (CH₄:H₂:Ar) were 10 sccm: 10 sccm: 300 sccm, respectively. After 15 min of deposition, the sample was rapidly cooled by pushing the quartz tube to a lower temperature region.

2.2. Growth of simonkolleite on NiF-G

Simonkolleite nanoplatelets $Zn_5(OH)_8Cl_2 H_2O$ were deposited directly on the NiF-G using a simple microwave-assisted hydrothermal technique . A 25 ml Pyrex® round-bottom tube was filled with an equimolar (10^{-1} M) aqueous solution of $Zn(NO_3)_2 GH_2O$, HMT and NaCl. Subsequently, the NiF-G samples were immersed in the solution and subjected to microwave irradiation of 700 W under a pressure of up to 100 bar for 1h in a single-mode microwave reactor which is pre-pressurized with N₂ gas to prevent boiling of the solution. Thereafter, the microwave reactor was allowed to cool down to ambient temperature. The final NiF-G/SimonK composite was obtained after washing and drying.

2.3. Results and Discussion

Field-emission SEM (FE-SEM) was used in this study to confirm the morphology of the deposited SimonK nanoplatelets on NiF-G (NiF-G/SimonK) as shown in Fig. 1. It can be seen from Fig. 1(a) that the 3D NiF-G/SimonK is a porous structure (pore size of ~0.15–2 mm) and it is clearly shown that the nanostructured SimonK is densely anchored onto both sides of NiF-G surface. At higher magnification, it is observed that the SimonK nanostructures are hexagonal and platelet-like (Fig. 1(b)). The diameter of

Download English Version:

https://daneshyari.com/en/article/1508868

Download Persian Version:

https://daneshyari.com/article/1508868

Daneshyari.com