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a b s t r a c t

Here the role and influence of aberrations in optical imaging systems employing partially coherent
complex scalar fields is studied. Imaging systems require aberrations to yield contrast in the output
image. For linear shift-invariant optical systems, we develop an expression for the output cross-spectral
density under the space-frequency formulation of statistically stationary partially coherent fields. We
also develop expressions for the output cross-spectral density and associated spectral density for weak-
phase, weak-phase–amplitude, and single-material objects in one transverse spatial dimension.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

When imaging transparent samples in an in-focus optical system
such as a visible-light or x-ray microscope, the detected output image
appears almost featureless if the system yields a reproduction of the
input image that is incident upon the system [1]. This is what optics is
commonly defined as a perfect or near perfect imaging system in
which there are no transverse spatial variations within the incident
spectral density distribution as it propagates to the output detection
plane. Note that the term “spectral density” is here used in the sense of
optical partial coherence. As perfect systems are unable to visualize
the refraction effects (phase contrast) caused by transparent samples,
the presence of aberrations is a necessary condition for non-negligible
contrast in the output spectral density to be attained [2]. In this con-
text, an aberrated imaging system may be defined as one whose
output transverse spatial distribution of spectral density is not equal to
the input transverse spatial distribution of spectral density, up to
transverse and multiplicative scale factors together with the smearing
effects of finite resolution. Almost all aberrated imaging systems ex-
hibit phase contrast, i.e. have an output spatial distribution of spectral
density which is influenced by the functional form of the input wa-
vefronts (input phase distribution). Examples of aberrated imaging
systems yielding phase contrast include Zernike phase contrast, pro-
pagation-based phase contrast, differential phase contrast, and inline
holography [1,3–5].

Work relating to a partially coherent treatment specifically for

propagation-based phase contrast imaging based on the Trans-
port-of-Intensity equation has been reported [6–8]. In this paper
we consider the generalized differential phase contrast associated
with aberrated linear shift-invariant optical imaging systems em-
ploying statistically stationary partially coherent scalar radiation,
for which the output spatial distribution of spectral density (i.e.,
the output image) can be modelled using the transfer function
formalism. This extends previously reported work by Paganin and
Gureyev [2] which restricted consideration to the generalized
differential phase contrast of fully coherent scalar fields imaged
using aberrated linear shift-invariant optical systems.

In Section 2 we obtain an equation that describes the action of
shift-invariant linear systems using partially coherent fields, under the
imaging assumption that the object under study is a pure thin phase
object. A two-dimensional transverse Cartesian coordinate system is
used in the derivation. In Section 3 expressions for the spectral density
are derived, restricting consideration to only one transverse spatial
variable for simplicity. Three different types of samples are considered:
samples that satisfy (i) the weak-phase object approximation, (ii) the
weak phase–amplitude approximation, and (iii) the single material
weak phase–amplitude approximation. Section 4 studies in depth the
features of the transfer function used in this formalism.

2. Shift-invariant, linear systems for partially coherent fields
using two transverse spatial coordinates

In this section we derive an expression for partially coherent
complex scalar fields imaged by an optical system that is shift-
invariant and satisfies the property of linearity [10]. For such a
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system, the output complex disturbance is related to the input
complex disturbance by the transfer function formalism [10]. Since
most image collecting is normally done using two dimensional
Cartesian grids it is natural to utilize a two-dimensional Cartesian
system (x,y) in all calculations.

Before incorporating the effects of partial coherence in our deri-
vations, we recall first a description of shift-invariant linear systems for
fully coherent complex scalar wave-fields which are governed by the
transfer function formalism. For such optical systems the output field

x y,outΨ ( ) is related to the input field x y,inΨ ( ) by a Fourier-space fil-
tration that can be written in operator form as [2]

x y F T k k F x y, , , . 1out x y in
1 { }Ψ Ψ( ) = ( ) ( ) ( )

−

Here, T k k,x y( ) is the transfer function characterizing the optical sys-

tem, k k,x y( ) are Fourier conjugate coordinates dual to (x,y), F and F 1−

respectively represent the forward and inverse Fourier transform op-
erations, and all operators are taken to act from right to left. Thus, the
above equation states that F is applied to the input field x y,inΨ ( ), be-
fore multiplying by the transfer function T k k,x y( ) and then applying

the operator F 1− , so as to yield the output field x y,outΨ ( ) (see Fig. 1).
In our derivation the forward and inverse Fourier transform

operation conventions used are the following:

G k k dx dy G x y e,
1

2
, , 2ax y

i k x k yx y∬π
( ) = ( ) ( )−∞

∞
− ( + )

G x y dk dk G k k e,
1

2
, . 2bx y x y

i k x k yx y∬π
( ) = ( ) ( )−∞

∞
( + )

Here, G k k F G x y, ,x y { }( ) ≡ ( ) .

To proceed further, we follow Paganin and Gureyev [2] and
make the restricting assumption that the transfer function T k k,x y( )
is sufficiently well behaved for its logarithm to admit a Taylor-
series representation. Note that a necessary condition for this as-
sumption to be valid is that the transfer function does not possess
any zeros over the patch of Fourier space for which the modulus of
F x y,in{ }Ψ ( ) is non-negligible, a region which may be termed the
“essential spectral support” of the input field.

While this key assumption will fail for imaging systems such as
Schlieren optics which completely block certain spatial frequencies in
the essential spectral support of the input disturbance, the assumption
will hold for a variety of important imaging systems such as out-of-
focus contrast [3], inline holography [5], interferometric phase contrast
[11], differential phase contrast [12], and analyzer-based phase con-
trast of weakly scattering samples [4].

With the above in mind, our simplifying assumption allows us
to express the transfer function in the classic form that is standard
e.g. in transmission electron microscopy, namely [2,14,13]:
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Under this representation we denote the set of complex numbers
mn{ }α∼ as the “aberration coefficients” where m and n are non-ne-

gative integers and label the order of the aberration. The real part
of each such coefficient is termed as a coherent aberration, with
the corresponding imaginary part being termed as an incoherent
aberration. See Paganin and Gureyev [2] for a direct link between
these complex aberration coefficients, and the Siedel aberrations
[15] (e.g., piston, defocus, astigmatism, spherical aberration, and
chromatic aberration) of classical aberration theory.

Expanding the complex exponential in Eq. (3) as a Taylor-series,
we obtain
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The above expression serves to define the set of coefficients mnα{ }.
The set of coefficients mnα{ } is defined in terms of the set of aberration
coefficients mn{ }α∼ . We note that like Eq. (3), Eq. (4) disallows the pre-
sence of any zeros in the transfer function T k k,x y( ). This form is par-
ticularly useful for studying the effect of transfer functions which differ
only slightly from unity, namely for weakly aberrated shift-invariant
imaging systems. We shall pick up on this point later in the paper.

It is useful to write the operator form of Eq. (1) in terms of the
following integral:
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where k k,in x yΨ ( ) denotes the Fourier transform of x y,inΨ ( ) with
respect to x and y. The above integral-form expression describes
the output wave-field for an optical system that is linear and shift-
invariant for incoming wave-fields that are fully coherent.

We now turn to the extension of this theory of fully coherent
fields to partially coherent fields. This corresponds to the gen-
eralization shown in Fig. 2. Here, Win is the cross-spectral density
incident upon a linear shift-invariant aberrated optical system,
yielding the corresponding output cross-spectral density Wout.

Under the space-frequency description of partial coherence
developed by Wolf [15,16], the output cross-spectral density at a
specified angular frequency ω may be constructed using an en-
semble of strictly monochromatic fields all of the same angular
frequency, via:

W x y x y x y x y, , , , , . 6out out out1 1 2 2 1 1 2 2( ) Ψ Ψ= * ( ) ( ) ( )ω

Here, angular brackets denote the ensemble average. Note that one
may also consider expressing Wout in terms of its coherent mode
expansion but incorporating other such correlating descriptions
into our framework is beyond the scope of this paper [15].

Putting this equation to one side for the moment, note that we

Fig. 1. Schematic illustration of the action of an aberrated shift-invariant linear
optical system for imaging fully coherent complex scalar wave-fields, under the
transfer function formalism. Input and output complex fields are related by the
transfer function formalism according to Eq. (1).

Fig. 2. Schematic illustration of the action of an aberrated shift-invariant linear
optical imaging system, for statistically stationary partially coherent complex scalar
fields, under the transfer function formalism. Input and output cross-spectral
densities,Win andWout respectively, are related by the generalized transfer function
formalism according to Eq. (8).
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