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H I G H L I G H T S

� Study non-classical light in a waveguide coupled to three-level systems (3LS).
� Optimize parameters for strong correlations using total inelastically scattered flux.
� Show 3LS are better candidates for experimental study of photon–photon correlations.
� Show how slow light effect is expressed in correlations.
� Find two-photon wavefunction for (i) two 3LS far apart and (ii) one 3LS plus a mirror.
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a b s t r a c t

We study photon correlations generated by scattering from three-level systems (3LS) in one dimension.
The two systems studied are a 3LS in a semi-infinite waveguide (3LS plus a mirror) and two 3LS in an
infinite waveguide (double 3LS). Our two-photon scattering approach naturally connects photon corre-
lation effects with inelastically scattered photons; it corresponds to input–output theory in the weak-
probe limit. At the resonance where electromagnetically induced transparency (EIT) occurs, we find that
no photons are scattered inelastically and hence there are no induced correlations. Slightly away from
EIT, the total inelastically scattered flux is large, being substantially enhanced due to the additional in-
terference paths. This enhancement carries over to the two-photon correlation function, which exhibits
non-classical behavior such as strong bunching with a very long time-scale. The long time scale origi-
nates from the slow-light effect associated with EIT.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The many similarities between quantum transport of electrons
(conduction) and optical phenomenon (propagation of EM radia-
tion) have been used over the years to enrich both fields. While a
scattering approach to the propagation of light, with input and
output amplitudes, is quite natural in both classical and quantum
optics [1,2], a comparable approach to electronic phenomena de-
veloped slowly. First introduced by Landauer [3,4], it was subse-
quently substantially developed by Büttiker [5–7]. This approach
was then used, for instance, to develop parallels in mesoscopic
physics between electronic and photonic phenomena, such as
coherent backscattering of electrons or photons from disordered
media [8,9]. Another example is in the development of semi-
classical (or eikonal) approximations to quantum chaotic

phenomena and the inclusion of diffractive effects [10]. While
these parallels were developed mainly in the non-interacting-
particle or linear-optics regime, interacting particles and the cor-
responding nonlinear regime are, of course, of key interest in both
photonic and electronic transport. One particular setting that has
received a great deal of attention in the quantum transport com-
munity is one-dimensional (1D) electrons interacting with local
quantum impurities, a setting that includes for instance the Kondo
problem, Anderson impurity model, and Bethe–Ansatz solutions
[11–13]. The parallel photonic system is a one-dimensional EM
waveguide strongly coupled to discrete non-linear quantum ele-
ments such as atoms, quantum dots, or qubits; in analogy with
“cavity QED” [2,14], the study of such systems is known as “wa-
veguide QED.”

The study of waveguide QED has increased rapidly over the
past decade. Prior to that, there were a few early papers on the
subject [15–19] that, for instance, exploited many-body ap-
proaches developed for electronic problems. The dramatic increase
in interest starting in the period 2005–2008 [20–24] was driven by
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experimental progress toward achieving strong coupling between
the waveguide and the local quantum system. Indeed, several
experimental waveguide-QED platforms are being actively pur-
sued. These include superconducting qubits coupled to a micro-
wave transmission line [25–30], semiconductor quantum dots
coupled to either a metallic nanostructure [31,32] or a photonic-
crystal waveguide [33], and more traditional quantum optics set-
tings in which atoms provide the local quantum system and the
waveguide is an optical fiber or glass capillary [34,35]. Interesting
waveguide-QED effects occur when the coupling to the waveguide
dominates other emission or dephasing processes. Experiments in
this interesting regime have been performed in several of the
above waveguide-QED platforms.

Two aspects of waveguide QED have attracted particular at-
tention theoretically: the manipulation of single photons and the
production of non-classical light. In the single photon arena, a
variety of devices have been proposed that build on the manip-
ulation of single photons by qubits or three-level systems (3LS)
that is possible in 1D systems; for representative work in this area
see Refs. [34,33,36] and references therein. With regard to non-
classical light, the main characteristics studied are the photon–
photon correlation function (also called the second-order co-
herence [37]) and the photon statistics. The majority of work on
these topics has treated a single quantum system coupled to the
waveguide, where the single quantum system is modeled as a
two-level system (2LS) or the only slightly more complicated
driven 3LS (for very recent work along these lines see, for example,
Refs. [38–41]). Correlation effects in a multi-qubit waveguide have
been studied in a number of recent papers using a variety of
techniques [42–55]. In most of these, the Markovian approxima-
tion is required in order to simplify the interactions between the
qubits via the waveguide [42–48]. There are, however, a few non-
Markovian results [49–55] which have been used to delineate the
range of validity of the Markov approximation.

Here we extend our recent results on multiple 2LS waveguide
QED [49–51] to the case in which driven 3LS are used. We calculate
the two-photon wavefunction and focus on photon–photon cor-
relations. We find that these correlations are substantially en-
hanced in systems containing 3LS, making them better experi-
mental candidates for further study of the non-classical light
produced. Furthermore, we find that the complexity of the struc-
ture enhances the photon–photon correlations—they are enhanced
by adding additional nonlinear elements (qubits) as well as by
simply adding a mirror. The photons can be either bunched or
anti-bunched depending on the situation, and we find cases of
both strong bunching and anti-bunching.

The paper is organized as follows. In the next section, we first
recap the standard model of waveguide QED and a 3LS and sum-
marize our approach to finding the two-photon wavefunction.
Then we present the physical quantities that are calculated, em-
phasizing the total inelastic scattering as a measure of the corre-
lated part of the wavefunction. Results for a single 3LS are pre-
sented in Section 3 as a basis for comparison to the more complex
structures studied later. In Section 4 we add a mirror to the sys-
tem, thus studying a single 3LS in a semi-infinite waveguide.
Section 5 covers results for two 3LS in an infinite waveguide. In the
results of both Sections 4 and 5, inelastic scattering is enhanced,
suggesting more visible correlation effects. Finally, in Section 6 we
discuss implications of the results and conclude.

2. Model and observables

2.1. Waveguide QED model with multiple three-level systems

The standard Hamiltonian of waveguide QED [20,22] consists of

a one-dimensional bosonic field that can travel to the left or right
coupled to N local quantum systems, often called simply qubits.
For a schematic see Fig. 1. Within the rotating-wave approxima-
tion, the Hamiltonian in real space reads (taking ℏ = =c 1)
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i denotes the Pauli raising operator of the i-th
qubit with position xi and coupling strength Vi, and aR,L denote the
annihilation operators of right- or left-going photons. The corre-
sponding decay rate of the i-th qubit to the waveguide is Γ ≡ V2i i

2.
Throughout this paper, the coupling of all of the qubits is the same,
V. In order to assess the maximum possible non-classical light
effects that could be present, we focus on the lossless limit.

The local quantum systems that we consider here are identical
3LS, = ∑ ( )H Hi

i
QS 3LS. The Hamiltonian for a Λ-type 3LS is
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in which Ω is the Rabi frequency of the classical driving and
ω ω Δ= −s e with Δ being the detuning between the driving fre-
quency and the frequency of the | 〉s to | 〉e transition. (The frequency
corresponding to the ground state is taken to be zero.) Finally, we
note that a mirror can be introduced as a boundary condition
when solving for the single-photon wavefunction [51,56–58].

To construct the two-photon scattering wavefunction, we use
the Lippmann–Schwinger equation [59,49–51], in which the Pauli
raising and lowering operators, σeg and σge, are replaced by bosonic
creation and annihilation operators, †b and b. (A similar approach
has been used in the case of two-electron scattering [60,61].) To
satisfy the level statistics, it is necessary to introduce an additional
on-site repulsion U to be taken as infinite at the end. For a 2LS, it is
known that this approach correctly gives all measurable quantities
[49,51]. For a 3LS, in addition to repulsion for each upper level, an
extra term has to be added so that the double occupancy can be
fully ruled out: the repulsion operator Ṽ is
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Note that the coefficient of the last term is chosen for convenience;
any coefficient would be canceled out after taking → ∞U . Once a
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Fig. 1. Schematic of waveguide QED. (a) Single 3LS coupled to a semi-infinite
waveguide with qubit-mirror separation a, ω ω=e 0 and ω ω Δ= −s 0 . (b) Two
identical 3LS, separated by distance L, coupled to an infinite waveguide.
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