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H I G H L I G H T S

� We model plasmon-induced local field enhancement near gold nanoantenna.
� Bio-inspired asymmetric geometry of nanoantenna is considered.
� Three asymmetrically placed near nanoantenna detectors allow us to resolve the polarization of incoming photons.
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a b s t r a c t

We applied quantum theory for nonlocal response and plasmon-assisted field enhancement near a small
metallic nanoscale antenna in the limit of weak incoming fields. A simple asymmetric bio-inspired de-
sign of the nanoantenna for polarization-resolved measurement is proposed. The spatial field intensity
distribution was calculated for different field frequencies and polarizations. We have shown that the
proposed design the antenna allows us to resolve the polarization of incoming photons.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is a strong demand for a new generation of optical de-
tectors with a high spatial, frequency and polarization resolution.
For many applications, including secure fiber-optical communica-
tion and quantum information processing [1], satellite imaging
and thermal imaging [2], DNA fluorescence and biochemical sen-
sing [3] or sensing and imaging through biomedical tissue [4], it is
necessary to detect a limited number of photons. Single photons
are difficult to detect and characterize. A usual way to enhance the
interaction between a single photon and matter is to place the
photon between two mirrors, creating a high-quality optical cavity
[5]. By making multiple round trips the photon is much more
likely to interact, for example, with an atom in the cavity. A re-
sonant microcavity with a high quality factor Q, and a mode
confined in volume V enhances the density of photon states by a
factor known as the Purcell factor Q V/ [6]. Creating microcavities
with a high Purcell factor is the central target in quantum optics.
But there is a limitation: the resonance cavity cannot be made less
than the wavelength λ of the photon, which is for visible light is
about 400–700 nm.

An alternative and very promising way to facilitate a strong
coupling regime between matter and a quantized electromagnetic
field is to use plasmonics [7–10]. The interaction of light with
metal nanostructures at certain frequencies may result in the
formation of collective excitations-plasmons. Plasmons were re-
cently recognized as the key in breaking down the diffraction limit
of conventional optics [9,10]. A highly confined electromagnetic
field associated with the response of the conduction electrons in a
metal nanostructure is not limited by the photon wavelength, and
may localize the electric field in a volume of just several cubic
nanometers. This results in enormous enhancement of the field–
matter interaction assisted by the resonant plasmon excitation
[11–13], which may significantly improve the chances of single
photon detection. The local-field enhancement was also suggested
for waveguide amplifiers in optical integrated circuits to com-
pensate for signal losses [14].

In this work we develop theory for local field enhancement in
the presence of a very small metallic nanostructured antenna. We
give the quantum mechanical description of both electron and
photon degrees of freedom, which is necessary in the case of very
small antennas and extremely weak fields. We show that the
presence of even a tiny nanostructure, containing several hundred
of conduction electrons, one can observe a significant increase of
the local field intensity. We have found that placing more than one
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detector near the nanoantenna can facilitate the resolution of the
polarization of the incoming photons. A smaller antenna size
(under 5 nm) may allow a stronger localization of the incoming
photons, however, for the nanostructure sizes less than 1 nm,
when the amount of conduction electrons becomes of the order of
100 and less, the plasmon response may become more damped.
Therefore, there is an optimal size of the nanoantenna, and for
smaller sizes the efficiency of the field localization would drop. For
even smaller sizes of the nanoantenna the plasmon peak may split
into several molecular-like resonances due to the Landau damping
[15].

2. Quantum theory of nonlocal plasmon excitation in quan-
tized electromagnetic field

Let us consider a small metal antenna shown in Fig. 1. The
antenna may consist of three or more parts placed under some
angle to each other. The design of the antenna is inspired by the
shape of phycobilisome, which is a light harvesting antenna of
photosystem II in cyanobacteria, red algae and glaucophytes [16].
It is known that the efficiency of the energy transfer by phycobi-
lisome exceeds 95% [17].

Photon detection near the antenna can be realized using either
dye molecules [18], nanoscaled quantum dots [19], or donors im-
purities [20]. The positions of the detectors are shown in Fig. 1 by
the circles. The asymmetry of the placement of the detectors is
intentional, which will be explained below. An incoming photon
can excite a plasmon that will generate a stronger and more lo-
calized induced field, which can then be successfully detected.
Therefore, the nanoantenna results in a larger effective cross-
section of the detectors. But this is not the only advantage. The
asymmetric placement of the detectors makes the local field en-
hancement very sensitive to the polarization of the incoming
photon. By comparing the magnitude of the detected photo-
currents from each detector one, in principle, may resolve the
incoming photon polarization with a high precision. In this work
we proposed that a fully functioning antenna–detector complex
can be made on the scale under 5 nm. An antenna of this size
cannot be manufactured with the currently available mass pro-
duction lithography methods. One can estimate that with the
current pace of the technological progress this spatial resolution
will be achieved in the next decade [21]. Using the currently
available Surface Tunneling Microscope technique [22], it is still
possible to assemble sample nanoantenna devices to perform the
measurements.

For ultrasmall nanostructures the dielectric response becomes
different from the bulk, and one needs to take into account the
nonlocal nature of the dielectric function r r, , ωϵ( ′ ). To do this let
us assume that the conduction electrons in the nanoantenna are

confined in an effective trapping potential of the positive back-
ground U reff ( ) and are interacting with quantized electromagnetic
field modes. Using standard second quantization procedure the
Hamiltonian of the system can be written as

H H H H , 1el F int= + + ( )

where the Hamiltonian of the electron subsystem Hel reads
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Here cn
† (cn) is the creation (annihilation) electron operator, and

Vnmlk is the Coulomb matrix element in the eigenbasis rkψ{ ( )} of an
electron in the trapping potential U reff ( ). The Hamiltonian for the
electromagnetic field is
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in the mode i with the frequency ωi and the wavevector Q i. Under
the assumption that for relatively weak fields one may neglect
multiphoton processes, the interaction between the electrons and
the field is given by
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where V is the field quantization volume, m and e are the electron
mass and the charge, and c is the speed of light. The gradient
operator ∇ takes the usual form: , ,
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Now let us introduce the density matrix ρ of the total system. It
is natural to assume that the system is initially in the product state

0 0 0E Fρ ρ ρ( ) = ( ) ⊗ ( ) in terms of the electronic and the field de-
grees of freedom. The electron quantum subsystem is described by
a set of the equilibrium occupations of the electron levels: f En{ ( )},
where f is the Fermi distribution function and En is the corre-
spondent electron energy. As for the initial state of the electro-
magnetic field, the most general state may be represented in the
photon number state basis n n0F n F

n n
i ii

i iρ ρ( ) = ∑ |{ }〉〈{ }|{ }
{ }{ } , where

we adopted the notation used in [23] n n n n, , ,i i1 2| … …〉 = |{ }〉. For
example, the state n n n, , ,i1 2| … …〉 has n1 photons in the 1st mode,
n2 photons in the 2nd mode, and so on.

If the coupling constant nm i
ext

,ϕ is relatively small, one may ex-
pand the density matrix of the system as a series

t t0 1ρ ρ ρ( ) = ( ) + ( ) + ⋯, and within linear response theory the
perturbed density matrix satisfies
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Note that under this approximation one neglects the entangle-
ment between the electron and photon subsystems and possible
induced entanglement between different photon modes ni.

We introduce the perturbed electron density matrix, which can
be obtained by applying the trace operation over the field vari-
ables TrE

F1 1ρ ρ= { }. Applying the trace operation and evaluating the
first commutator in Eq. (6), we note that a aTr , 0F l l l nikj1ħω ρ([ ]) =† ,
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commutator with the Coulomb term can be calculated using
the standard Random Phase Approximation (RPA) for a prod-
uct of electronic operators [24]: c c c c c c c ck q m n k n q m≈ 〈 〉+† † † †

Fig. 1. The antenna and single photon detectors placed on a dielectric substrate.
Incoming photons can lead to plasmon excitation and the local field enhancement
next to the asymmetrically placed antenna parts. The local field can be registered
by detectors, shown by the circles near the antenna.
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