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a b s t r a c t

The elastostatic problem of a Timoshenko nanobeam is formulated by a new constitutive behaviour of
gradient-type. Unlike previous approaches which directly substitute the expression of the nonlocal
stress into the classical equilibrium equations, the proposed model starts from a nonlocal thermo-
dynamic formulation. A suitable definition of the expression for the internal energy provides the
variational formulation of Timoshenko nanobeams in terms of rotations and transverse displacements so
that a higher-order system of ordinary differential equations is consistently obtained with the
corresponding boundary conditions. Different from other nonlocal models, the solutions indicate that
the stiffness of nanobeams is significantly increased at smaller scales due to size effects. The solutions
corresponding to local models are perfectly obtained as a special case of the nonlocal ones.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The mechanical behaviour of micro- and nano-sized components
is significant different from the corresponding performance at larger
scale due to size effects which are lacking at macroscale. Films,
micro- and nano-beams and plates are commonly used in Micro
Electro-Mechanical Systems (MEMS) and Nano Electro-Mechanical
Systems (NEMS) devices or in nanocomposites as filling components
for material reinforcements and experimental results show that such
components exhibit size effects, see e.g. Hutchinson [1], Miller and
Shenoy [2], Lam et al. [3], Yang [4], Guz et al. [5].

The small size of the samples requires a high precision so that
the experiments are difficult to conduct and they often provide
significant varying measurements, see e.g. the Young modulus for
CNT [6,7].

Hence an in-depth understanding of analytical models and
numerical studies of nano-structures is of utmost importance in
design of nanomechanical systems.

It is well-known that size-effects cannot be exhibited by
models based on classical continuum mechanics due to the lack
of the material internal length. Accordingly atomistic models or
new continuum theories can be introduced.

Atomistic/molecular dynamic simulations are computationally
expensive and could become too complex to simulate nanostruc-
tures whereas high-order continuum models provide simple and
effective tools in studying structural nanomodels [8–11].

In order to simulate interactions at the nanoscale, high-order
continuum models can be used such as strain gradient theories
[12,13], modified coupled stress theories [14–16] and nonlocal
elasticity theories [17–21]. A nonlocal model for nanoroads under
axial loads has been presented in Ref. [22] and a nonlocal FE
approach in Refs. [23,24].

Since [25] most of the studies on micro- and nanobeams based
on the Eringen nonlocal elasticity theory follow a similar approach,
i.e. the stress tensor in the classical equilibrium equations is
replaced by the corresponding nonlocal quantity (see e.g. Refs.
[26–29]). As a result an increasing of the nonlocal parameter
provides a reduction of the nanostructural stiffness so that the
bending deflection of a simply supported beam under a distrib-
uted uniform load growths with respect to the corresponding local
beam [30]. The opposite behaviour is revealed by a nanocantilever
beam under a distributed uniform load since an increasing of the
nonlocal parameter provides an increasing of the nanostructural
stiffness. Note that experiments seem to show that the stiffness of
structures tends to increase at smaller scales due to the size
effects, see e.g. Ref. [3] with reference to epoxy polymeric beam.

In this paper the nonlocal elasticity theory is adopted to propose
a new model for bending of Timoshenko nanobeams starting from a
nonlocal thermodynamic framework (see e.g. Refs. [31,32]) which
has been recently proposed to consistently obtain nonlocal formu-
lations by suitably defining the internal energy or the Helmholtz
free energy.

This new approach is used to derive the variational formulation
associated with the Timoshenko nanobeam for the first time. Two
nonlocal nanoscale parameters are considered: the former is linked
to the normal strain and the latter is related to the transversal shear
strain. Local and nonlocal stress resultants (bending moments and
shear forces) are suitably defined. An explicit expression of the
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classical bending moment and shear force is provided. It is then
shown in Appendix A that such quantities are related to the applied
loads via the classical equilibrium equations.

The nonlocal Timoshenko model is then reformulated by using
Green's formula and a system of two nonlocal fourth-order differ-
ential equations, in terms of the transversal displacement and
rotation, is obtained together with the consistent higher-order
boundary conditions containing the nonlocal nanoscale parameters.
The structural nanostructural problem can be exactly solved thus
providing the exact bending solution in terms of displacement,
rotation and stress resultants for Timoshenko nanobeams.

The proposed exact nonlocal Timoshenko model reduces to the
Euler–Bernoulli nonlocal model reported in Ref. [28] as a special
case. Further, if the small-scale parameters vanish, the nonlocal
Timoshenko model tends to the classical one.

For illustration purpose of the solution procedure, a cantilever
nanobeam with a point load at the tip end and a simply supported
nanobeam subjected to a uniform distributed load are considered.
Both cases show that the nanostructural stiffness rises at the
nanoscale with respect to the classical one and the solutions
corresponding to the local models are faultlessly recovered.

2. A nonlocal thermodynamic framework for nanobeams

In nonlocal elasticity, the elastic strain tensor ε at a point x of
the bodyΩ induces a stress tensor r not only at x but also at other
points in the body and the stress has a decreasing magnitude with
the distance.

The internal energy density e in a nonlocal elastic material can
then be assumed in the form

e¼ eðε;R1ε;R2ε;…;Rnε; sÞ ð1Þ
where Riε (i¼ 1;…;n) are additional variables defined as func-
tionals of the strain tensor ε and s is the entropy. In particular, the
value of the internal variables Riε at a point x is related to the
values of the strain over a neighbouring region of the body.

In a gradient elastic theory, the governing equations for a
Timoshenko nanobeam can be obtained by a thermodynamic
approach which accounts for the material nonlocality based on
the relation (1).

Let us assume that the absolute temperature T is constant, i.e.
there is no heat input due to radiation or conduction, and the
density of mass is constant. The first law of thermodynamics for
isothermal processes and for a nonlocal behaviour, see e.g. Refs.
[33,34], can be formulated as follows:Z
Ω
_eðε;∇ε;…;∇nε; sÞ dV ¼

Z
Ω
rn _ε dV ð2Þ

where the internal energy density e depends on strains
ε;∇ε;…;∇nε and entropy s and r is the nonlocal stress. The dot-
superscript convention indicates the differentiation with respect to
the time variable and the symbol ∇n is the nth-order gradient. The
energy balance in Eq. (2) can be written pointwise inΩ in the form

_e ¼rn _εþP ð3Þ
where the additional thermodynamic scalar variable P is the
nonlocal residual function and takes into account the energy
exchanges between neighbour particles [35]. Since nonlocal effects
due to elastic deformations are confined into the body, the residual
P fulfils the insulation conditionZ
Ω
P dV ¼ 0: ð4Þ

The second principle of thermodynamics for isothermal pro-
cesses, in the nonlocal context, is written in its local form _sTZ0
everywhere in Ω where _s is the internal entropy production rate

per unit volume. In fact if the second principle holds in the global
form

R
Ω
_sT dVZ0, there would be a class of deformation mechan-

isms which are reversible at the global level, since the second
principle in the global form is equal to zero, but the same
deformation mechanism turns out to be irreversible at the local
level which is not physically acceptable.

Denoting by ψ ðε;∇ε;…;∇nε; TÞ the Helmholtz free energy
defined by means of the Legendre transform ψ ¼ e�sT and
performing the time derivative of the Helmholtz free energy in
connection with the second principle, the dissipation D at a given
point of the body follows from the relation (3) in the form

D¼ _sT ¼ rn _ε� _ψ þPZ0; ð5Þ

with _T ¼ 0. The relation (5) represents the nonlocal Clausius–
Duhem inequality for isothermal processes and the presence of the
nonlocal residual function P guarantees the non-negativeness of
the dissipation and accounts for material nonlocality. The body
energy dissipation E follows by integrating the relation (5) to get

E ¼
Z
Ω
_sT dV ¼

Z
Ω
rn _ε dV�

Z
Ω
_ψ dVZ0: ð6Þ

Expanding the relation (6) and following the arguments used in
Ref. [36], the inequality (5) becomes an equality so that the
dissipation (5) is pointwise vanishing according to the reversible
nature of the model. As a consequence, for any admissible
deformation mechanism, it resultsZ
Ω
rn _ε dV ¼

Z
Ω
½dεψn _εþd∇εψn ∇ _εþ⋯þd∇nεψn ∇n _ε� dV : ð7Þ

In what follows, the nonlocal model for Timoshenko nano-
beams is developed starting from this nonlocal thermodynamic
framework.

3. Timoshenko nanobeam kinematics

Let us consider a homogeneous isotropic nanobeam of length L
as shown in Fig. 1. The x-coordinate is taken along the length of
the beam, the y-coordinate along the thickness and the z-coordi-
nate is taken along the width of the beam. The geometry and the
applied loads of the nanobeam are such that the displacements
ðsx; sy; szÞ along the axes ðx; y; zÞ are functions of the x- and y-
coordinates. It is further assumed that the displacement sz is
identically zero and that the nonlocal behaviour is negligible in
the thickness direction. The cross-sectional area A and the second
moment of area I about the z-axis are

ðA; IÞ ¼
Z
A
ð1; y2Þ dA: ð8Þ

The proposed Timoshenko nanobeam model (TNM) is based on
the following displacement field [37]:

sxðx; yÞ ¼ �φðxÞy; syðx; yÞ ¼ vðxÞ; szðx; yÞ ¼ 0 ð9Þ

Fig. 1. Geometry and loading of the nanobeam.
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