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H I G H L I G H T S

� The dynamic shaping of transport–reaction processes is investigated.
� The spatiotemporal shaping is addressed via model order reduction.
� The desired spatiotemporal behavior is described by a target PDE.
� A sliding mode controller design is applied to track desired dynamics.
� A dynamic observer is employed to estimate the system dominant modes.
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a b s t r a c t

We focus on shaping the long-term spatiotemporal dynamics of transport–reaction processes which can
be described by semi-linear partial differential equations (PDEs). The dynamic shaping problem is
addressed via error dynamics regulation between the governing PDE and a target PDE which describes
the desired spatiotemporal behavior. A model order reduction methodology is utilized to construct the
required reduced order models (ROMs) for governing and target dynamics via Galerkin's method. We
subtract the governing from the target ROMs to obtain reduced offset dynamics error. Then an output
feedback sliding mode control structure is synthesized to stabilize the reduced error dynamics and
correspondingly synchronize the system and the target spatiotemporal behaviors. A Luenberger-type
dynamic observer is applied to estimate the states of the governing ROM required by the sliding mode
controller. The proposed approach is applied to address the thermal spatiotemporal dynamic shaping
problem in a tubular chemical reactor.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recently there has been an increasing focus on modeling and
control of distributed parameter systems (DPSs) in chemical process
and advanced material production industries. Such type of systems
frequently arise in a wide range of chemical processes, e.g., fixed and
fluidized bed reactors, polymerization and crystallization processes,
chemical vapor deposition systems and semiconductor manufacturing
processes, due to the existence of diffusion, dispersion and convection
mechanisms (Adomaitis, 2003; Christofides, 2000; Lin and Adomaitis,
2001; Ray, 1981; Theodoropoulou et al., 1998). It is imperative to
tightly control these processes so that there are zero product quality
excursions, even when the process objectives dynamically change
which is a usual occurrence in such industrial applications. While
DPSs can be mathematically described by partial differential equations

(PDEs) and the control problem is a difficult task due to the spatial
distribution of the system states (Bohm et al., 1998; Christofides,
2000; Curtain and Zwart, 1995; Krstic and Smyshlyaev, 2008; Ng and
Dubljevic, 2012; Smyshlyaev and Krstic, 2010), it becomes even more
complicated in the case of chemical DPSs where chemical reactions
take place leading to nonlinearities in the governing equation.

Focusing on transport–reaction processes with significant diffu-
sive mechanisms and their mathematical description, we note that
they can be described by semi-linear dissipative PDEs whose
infinite-dimensional representation in an appropriate functional
subspace can be partitioned into two subsystems: slow (and
possibly unstable) and fast (and stable), with a time scale dynamic
separation (Christofides, 2000). Considering such property, model
order reduction (MOR) methodologies have been extensively used in
modeling and control of chemical DPSs (Babaei Pourkargar and
Armaou, 2014b, 2015b,c; Balas, 1991; Bentsman and Orlov, 2001;
Christofides, 2000; Dubljevic et al., 2004; El-Farra et al., 2003;
Hanczyc and Palazoglu, 1995). Galerkin's method is one of the
typical approaches to implement MOR. The required basis functions
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in such approach can only be computed analytically if and only if the
spatial differential operator is linear and the process operates over
regular domains. Statistical approaches can be employed as an
alternative solution to compute the empirical basis functions of a
general class of DPSs from an ensemble of solution profiles. Proper
orthogonal decomposition is one of the commonly used statistical
techniques to find the optimal set of empirical basis functions for a
representative set of solution data which has been widely applied in
model reduction, optimization and control of DPSs (Armaou and
Christofides, 2002; Babaei Pourkargar and Armaou, 2013b, 2014a;
Izadi and Dubljevic, 2013; Sirovich, 1987) where geometric and
Lyapunov based approaches have been used.

Sliding mode control is a variable structure nonlinear control
method which changes the nonlinear system dynamics by applying
a discontinuous control signal (Khalil, 2002; Slotine and Li, 1991). The
sliding mode controller forces the system dynamics to slide along the
boundaries of the system normal behavior called “sliding surface”
(Edwards and Spurgen, 1998; Utkin, 1992). The discontinuous nature
of the controller structure causes insensitivity to parameter variations
and complete disturbance rejection (Bandyopadhyay and Janardhanan,
2006). Sliding mode optimization and controller designs have been
applied in a wide range of chemical, mechanical and electrical systems
(Bartolini et al., 1997; Bartoszewicz et al., 2008; Fridman, 2003;
Hanczyc and Palazoglu, 1995; Misawa and Utkin, 2000).

To implement the model-reduced controller design for DPSs
we need an accurate estimation of the states of the governing
reduced order models (ROMs). Static observer designs, which
were widely employed to estimate such desired states
(Christofides, 2000; Dubljevic et al., 2004; Varshney et al.,
2009), require the number of measurement sensors to be super-
numerary to the number of ROM states. One of the solutions to
circumvent such requirement is applying dynamic observers
which theoretically need only one measurement sensor
(Babaei Pourkargar and Armaou, 2013a,b; 2014c). While dynamic
observer synthesis has reached an extensive maturity for
lumped parameter systems described by ordinary differential
equations (ODEs) (Gauthier et al., 1992; Karafyllis and Kravaris,
2005, 2012; Kazantzis and Kravaris, 1998; Keller, 1987; Michalska
and Mayne, 1995; Soroush, 1997; Thau, 1995), the synthesis
problem remains challenging for DPSs (Curtain et al., 2003;
Fuji, 1980; Smyshlyaev and Krstic, 2005; Xu et al., 1995; Yang
and Dubljevic, 2014).

In this paper we consider the spatiotemporal dynamic shaping of
transport–reaction processes via MOR. The dynamic shaping pro-
blem is addressed by regulating the error dynamics between the
governing PDE and a desired spatiotemporal dynamics which are
described by a target PDE with the same spatial differential operator.
The governing target PDEs are discretized by applying Galerkin's
method to obtain ROMs in the form of low-dimensional modal ODEs
when the required dominant basis functions are computed analyti-
cally by solving the eigenproblem of the linear part of the spatial
differential operator. The error dynamics between the governing and
target systems are derived by subtracting the ROMs in the form of
low-dimensional ODEs which describe the spatiotemporal error
dynamics. Then an output feedback control structure is synthesized
to stabilize the error dynamics. The control structure is considered
as a combination of a Lyapunov-based sliding mode controller
(Khalil, 2002; Slotine and Li, 1991) and a Luenberger-type dynamic
observer to estimate the system modes.

The remainder of the paper is organized as follows: a mathe-
matical description of the studied class of semi-linear DPSs and
their properties are presented in Section 2. Section 3 presents a
short description of the used MOR method. The spatiotemporal
dynamic shaping problem is addressed via an output feedback
sliding mode control structure synthesis in Section 4. Finally, the
proposed dynamic shaping method is successfully illustrated on

thermal dynamic shaping inside a tubular chemical reactor
described by a semi-linear PDE in Section 5.

2. Preliminaries

2.1. Problem formulation

To formulate the spatiotemporal dynamic shaping problem we
consider a 1D transport–reaction process which can be described
by a semi-linear PDE:

∂
∂t
Xðz; tÞ ¼AnðzÞXðz; tÞþF z; Xðz; tÞð ÞþBðzÞuðtÞ;

yðtÞ ¼
Z
Ω
sðzÞXðz; tÞ dz;

q X;
∂X
∂z

;…;
∂n�1X
∂zn�1

� �
¼ 0 on ∂Ω;

Xðz;0Þ ¼ X0ðzÞ; ð1Þ

where Xðz; tÞAR is the spatiotemporal state of the system, zAΩ
the 1D spatial coordinate, t the time, Ω the process domain, ∂Ω
the process boundaries, AnðzÞ the linear spatial differential opera-
tor of order n, F z; Xðz; tÞð Þ the smooth Lipschitz nonlinear function,
uðtÞARl the vector of manipulated inputs, BðzÞ the spatial distribu-
tion of manipulated inputs, yðtÞARp the vector of contentious
measurements, sðzÞ the vector of measurements' spatial distribu-
tion, qðX; ∂X=∂z;…; ∂n�1X=∂zn�1Þ the vector of linear homogeneous
boundary conditions, and X0ðzÞ the initial spatial profile of the
system state. The dissipative PDE of (1) is linearly dominant, i.e.,
the spatial differential operator is purely linear and the nonlinear-
ity only appears as a Lipschitz function in the system dynamics.
Such equation arises in the majority of transport–reaction pro-
cesses in the chemical process industries (Christofides, 2000; Ray,
1981), where the linear term of AnðzÞXðz; tÞ indicates the transport
(diffusion, dispersion and convection) component and the non-
linear term of F z; Xðz; tÞð Þ expresses the reaction dynamics.

Remark 1. According to the Lipschitz property of the nonlinear
function of F z; Xðz; tÞð Þ which makes it to be sufficiently smooth,
the Picard–Lindelöf theorem can be applied to guarantee the
existence and uniqueness of the solution (Teschl, 2012).

2.2. System representation

The studied DPS, which is described by the PDE of (1), can be
represented in the abstract infinite-dimensional form of

_xðtÞ ¼ AxðtÞþ f xðtÞð ÞþbuðtÞ; xð0Þ ¼ x0;

yðtÞ ¼ SxðtÞ; ð2Þ

by defining the functional state of xðtÞAW:

xðtÞ ¼ Xð�; tÞ;
the linear differential operator:

AxðtÞ ¼AðzÞXð�; tÞ;
the nonlinear function:

f xðtÞð Þ ¼ F z;Xð�; tÞð Þ;
and the manipulated input operator:

buðtÞ ¼ BðzÞuðtÞ;
in an appropriate Sobolev subspace of W:

WðΩÞ ¼ H;
∂H
∂z

;…;
∂n�1H
∂zn�1 AL2ðΩÞ : q H;

∂H
∂z

;…;
∂n�1H
∂zn�1

� �
¼ 0

� �
;
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