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H I G H L I G H T S

� Reduced order model is developed
for diffusion and reaction in sup-
ported catalysts.

� The mesoscale kinetic constants in a
single-mode model are diffusion dis-
guised.

� The two-mode model retains the
true kinetics and up-scales the
microscale effects.

� Mass-transfer coefficient in two-
mode model depends on crystallite
distribution.

G R A P H I C A L A B S T R A C T

Activity (crystallite) distribution (left) and the corresponding concentration at the wall in the axial and
azimuthal directions (right) for diffusion and reaction in a cylindrical pore.
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a b s t r a c t

We consider the problem of diffusion and reaction in a supported catalyst in which the active sites are
located on the crystallites that are distributed in the form of islands (archipelagos) on the pore walls. We
determine the coarse-grained mesoscale kinetic constants in terms of the true crystallite scale constants,
catalyst activity distribution, pore size and species molecular diffusivities. We analyze the effect of
different catalyst archipelagos on the mesoscale rate constants. We also develop a two-mode coarse
grained model to describe diffusion and reaction accurately in such systems and develop criteria under
which the pore and crystallite scale gradients can be neglected. A significant result is that for moderately
fast reactions, the kinetics is disguised in the coarse-grained model if a single pore space averaged
concentration mode is used. However, the true kinetics may be represented accurately with the use of
two concentration modes, the second mode being the activity weighted concentration.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction and literature review

A fundamental understanding of the coupling between diffu-
sion and reaction in supported porous catalysts is essential for the
design and scale-up of catalytic reactors. In the classical catalytic
reaction engineering literature, this problem is analyzed at the
macro- (or catalyst particle) scale by using a one-dimensional
diffusion–reaction model with global reaction kinetics and effec-
tive diffusivities. For example, for the case of a catalyst that is in
the form of a thin plate or a straight cylindrical pore with no

gradients in the radial (or azimuthal) direction, this classical one-
dimensional diffusion–reaction problem in dimensionless form
may be expressed as (Aris, 1975; Froment and Bischoff, 1990;
Jackson, 1977)

d2c

dx2
¼ϕ2R cð Þ; 0oxo1

c′ð0Þ ¼ 0; cð1Þ ¼ 1; ð1Þ

where c is the dimensionless concentration and ϕ2 is the (square
of the) Thiele modulus defined as the ratio of the characteristic
diffusion time to the reaction time and R(c) is the dimensionless
reaction rate. The solution to the above one-dimensional model for
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the case of linear kinetics (RðcÞ ¼ c) is given by

c xð Þ ¼ coshðϕxÞ
coshðϕÞ ; ϕ2 ¼ kvL

2

Dm
; ð2Þ

and leads to the well known expression for pore effectiveness
factor η as

η¼ tanhðϕÞ
ϕ

; ð3Þ

which has the two asymptotes:

η¼
1; ϕ51
1
ϕ
; ϕb1:

8><
>: ð4Þ

In other words, in the limit of slow reactions ðϕ51Þ, the observed
(macroscopic) reaction rate constant kobs is independent of mole-
cular diffusivity. For the case of a cylindrical pore, we have

kobs ¼ kv ¼ avks; av ¼
2
rp

ð5Þ

where kv is the reaction rate constant based on the pore volume;
ks is the rate constant based on the pore surface area, and av is the
specific surface area of the pore (rp ¼ pore radius). If only a
fraction of the pore surface is catalytically active and k0 is the
intrinsic rate constant based on the active surface area of the pore,
we have

ks ¼ ac
av
k0; ð6Þ

or

kobs ¼ ack0 ð7Þ
where ac is the exposed active catalytic area of the pore. Thus, in
this kinetic limit, the observed rate constant depends only on the
intrinsic kinetic parameters, namely the active surface area (ac)
and the microscale rate constant (k0), or in this case, the product
ack0.

When the characteristic reaction time is much smaller than the
species diffusion time based on the pore length, or for fast
reactions ðϕb1Þ, the observed rate constant is given by

kobs ¼
1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ksDm

rp

s
¼ 1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ack0Dm

p
ð8Þ

where Dm is the molecular diffusivity (assuming that diffusion in
the pore is in the molecular regime). In this limit, the pore length
as well as the species diffusivity enter the observed rate constant.

As pointed out by Bischoff (1966) and Aris (1975), the above
one-dimensional treatment may not be valid for short pores or fast
reactions where the gradients in the transverse direction of the
pore may become important. More recently, Balakotaiah and
Gupta (2000) analyzed the pore-diffusion problem in two dimen-
sions and presented new forms of solution (for linear kinetics).
They derived the exact expression of the effectiveness factor for
classical Bischoff–Aris pore diffusion problem as follows:

η¼ ∑
1

n ¼ 1

2αI1ðαvnÞ
vn αvnI1 αvnð Þþ ϕ2α2

2

� �
I0 αvnð Þ

h i; ð9Þ

where α2 ¼ r2p=L
2 is the ratio of axial to transverse diffusion time; L

is the pore length; I0 and I1 are zeroth and first order modified
Bessel functions of first kind, respectively; and vn ¼ n�1

2

� �
π: Unlike

the traditional effectiveness factor plot, a plot of Eq. (9) may show
up to three asymptotes:

Ið Þ ϕ51 & αϕ51 : η¼ 1; kobs ¼ kv ¼
2ks
rp

¼ ack0; ð10Þ

IIð Þ ϕb1 & αϕ51 : η¼ 1
ϕ
; kobs ¼

1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ksDm

rp

s
¼ 1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ack0Dm;

p
ð11Þ

IIIð Þ að Þ ϕb1 & αϕb1 : η¼ 4

αϕ2

1
π
ln

2α2ϕ2

3π

 !
þ0:251

" #
;

bð Þ kobs ¼
4Dm

Lrp

1
π
ln

2ack0r2p
3πDm

 !
þ0:251

" #
: ð12Þ

The first two asymptotes are same as those predicted by the 1-D
model. The third asymptote, in which the observed reaction rate
constant is a logarithmic function of the true surface rate constant,
is realized for fast reactions or short pores where strong concen-
tration gradient exists in both the axial and radial directions. In
this limit, the observed rate constant depends on the pore
dimensions (rp and L) as well as species molecular diffusivity and
is a very weak function of the intrinsic constants (k0 or ac). Further,
this limiting case is attained when the square of the Thiele
modulus based on the pore radius, i.e.

ϕ2
s ¼ α2ϕ2 ¼ 2ksrp

Dm
¼ ack0r2p

Dm
ð13Þ

exceeds unity. From a physical point of view, this limiting case is
attained when the characteristic reaction time is smaller than the
species diffusion time based on the pore radius so that transport in
the entire pore (in the radial as well as axial directions) is diffusion
limited.

The prior work reviewed above assumes that the reactant
concentration gradients extend only to the pore dimensions and
the activity on the pore wall does not vary along the axial or
azimuthal directions. However, in practice, the active sites in
supported catalysts are located on the crystallites which are
distributed in the form of islands (archipelagos) on the pore walls
and cover only a small fraction (typically 1–2%) of the pore surface
area. For example, as shown in Fig. 1, the active sites (metal
crystallites) form archipelagos on the pore wall of a porous catalyst
in a typical monoliths used in a three-way catalytic converter. This
non-uniform distribution in catalyst activity within a pore is not
taken into account in most prior modeling of diffusion and
reaction in supported porous catalysts. This is the main focus of
the current work. Specifically, we consider the problem of three
dimensional (3-D) diffusion and reaction in a cylindrical pore in
which the reaction takes place only on the pore walls and the
active sites form an archipelago. Based on the discussion above, it

Fig. 1. Schematic diagram illustrating various length scales and crystallite distribu-
tion in the porous washcoat of a three-way catalytic converter.
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