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a b s t r a c t

A first-principles approach called the self-consistent quasiharmonic approximation (SC-QHA) method is for-
mulated to calculate the thermal expansion, thermomechanics, and thermodynamic functions of solids at
finite temperatures with both high efficiency and accuracy. The SC-QHA method requires fewer phonon
calculations than the conventional QHA method, and also facilitates the convenient analysis of the
microscopic origins of macroscopic thermal phenomena. The superior performance of the SC-QHA
method is systematically examined by comparing it with the conventional QHA method and experimen-
tal measurements on silicon, diamond, and alumina. It is then used to study the effects of pressure on the
anharmonic lattice properties of diamond and alumina. The thermal expansion and thermomechanics of
Ca3Ti2O7, which is a recently discovered important ferroelectric ceramic with a complex crystal structure
that is computationally challenging for the conventional QHA method, are also calculated using the
formulated SC-QHA method. The SC-QHA method can significantly reduce the computational expense
for various quasiharmonic thermal properties especially when there are a large number of structures
to consider or when the solid is structurally complex. It is anticipated that the algorithm will be useful
for a variety of fields, including oxidation, corrosion, high-pressure physics, ferroelectrics, and high-
throughput structure screening when temperature effects are required to accurately describe realistic
properties.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Accurately simulating various anharmonic properties, i.e., ther-
mal expansion and thermomechanics, of solids is important for
obtaining a deep understanding of their plentiful thermal behav-
iors and for their realistic applications. The anharmonic properties
can be derived from the volume and temperature dependences of
the phonon spectra calculated using density-functional theory
(DFT) [1]. The most popular approach is the quasiharmonic
approximation method (QHA) [2–4], where only the volume
dependence is considered for the phonon anharmonicity, and
temperature is assumed to indirectly affect phonon vibrational
frequencies through thermal expansion. Here, the phonon spectra
of about ten or more volumes are usually required for a
typical QHA simulation, and the thermal expansion and thermo-
mechanics are derived by fitting the free energy-volume relation-
ship. In some cases, e.g., at high temperatures, high-order
anharmonicity caused by multi-phonon coupling cannot be
omitted as in the QHA method, and some more complicated and

time-consuming methods, e.g., molecular dynamics [5–12],
self-consistent ab initio lattice dynamics [13,14], perturbative/
nonperturbative renormalized harmonic approximations [15–18],
and vibrational self-consistent field calculations [19], can be used
to obtain the temperature-dependent phonons. Nonetheless,
approximately ten or more volumes of such phonon spectra are
also required to accurately calculate the thermal expansion and
thermomechanics with the high-order anharmonicities.

Phonon calculations based on DFT forces are always time
consuming, and prior to the actual calculation, various computa-
tional parameters [1,20] also need to be carefully tested to ensure
convergence of the vibrational frequencies and anharmonicity,
including the pseudopotentials, cutoff energy, k-mesh density,
energy and force convergence thresholds, and supercell size in
the small-displacement method [21,22] or the q-mesh density in
the density-functional perturbation theory approach [23,24]. The
general rule-of-thumb requiring ten or more volumes will make
the anharmonic simulation, even when utilizing the simplest
QHAmethod, rather computationally expensive, especially in some
condensed matter fields where a large number of structures must
be considered or the compound under study has a large unit cell,
low symmetry, and numerous inequivalent atoms:
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(i) In the fields of solid oxidation and corrosion, there are
always many compounds (elements, oxides, hydroxides,
oxyhydroxides, etc.) to consider [25–30] and each composi-
tion may have many polymorphs [31–33].

(ii) In the high-pressure physics field, not only a wide range of
volumes but also a large number of complex phases should
be examined [34–36].

(iii) For the metallic alloys field, the thermodynamics and
mechanics of many phases at variable composition and
temperature are always of concern [37–39].

(iv) In the perovskite oxides [40–42], ternary ceramics exhibit
complex structures and large unit cells. The phonon
calculations for an individual structure is already quite time
consuming, not to mention the calculation of anharmonic
properties in low-symmetry polymorphs.

(v) In high-throughput screening and materials design [43–46]
when including temperature effects, a huge number of
compositions and structures should be calculated with a
high efficiency-to-accuracy ratio.

To this end, these diverse fields require an efficient method to
accelerate the investigation of the anharmonic properties of
related solids at finite temperatures.

In this work, we formulate an ab initio method, called the
self-consistent quasiharmonic approximation (SC-QHA) method, for
achieving fast anharmonic calculations with high accuracy within
the quasiharmonic approximation. Only the phonon spectra of
two or three volumes are required in a SC-QHA calculation, which
usually is much faster than the conventional QHA method. We
carefully test the SC-QHA method using prototypical silicon,
diamond, and alumina, and then also study the pressure effect on
the anharmonic properties of diamond and alumina. Finally, we
apply the SC-QHA method to accurately calculate the thermal
expansion and thermomechanics of the structurally complex
hybrid-improper ferroelectric Ca3Ti2O7. Apart from the high effi-
ciency, we show that the SC-QHA method is also very convenient
for deciphering the microscopic physical origins of lattice dynam-
ical and thermodynamic phenomena. Moreover, it can be readily
transferred beyond the quasiharmonic realm to speed up the
accurate first-principles simulation of thermal effects for the
benefit of multiple fields in condensed-matter physics.

2. Thermodynamics and computation

2.1. Theoretical basis

The total Gibbs free energy (Gtot ¼ Ftot þ PV) of a crystal unit cell
is expressed as

GtotðP; TÞ ¼ FeðV ; TÞ þ FphðV ; TÞ þ PV ; ð1Þ
where P;V ¼ VðP; TÞ, and T are the external pressure, unit-cell vol-
ume, and temperature, respectively; Fe and Fph are the electronic
and phononic Helmholtz free energies, respectively. To conve-
niently present the basic algorithm and efficiency of the SC-QHA
method, only nonmagnetic insulators are considered here, where
the electronic excitation and magnetic excitations are neglected.
The transferability of the SC-QHA algorithm for solids with more
complex degrees of freedom are discussed below. Therefore,
FeðV ; TÞ here equals the electronic energy EeðVÞ calculated from
density functional theory (DFT) and FphðV ; TÞ is expressed as

Fph ¼ 1
Nq

X
q;r

�hxq;r

2
þ kBT log 1� exp � �hxq;r

kBT

� �� �� �
; ð2Þ

where kB is the Boltzmann constant, Nq is the number of considered
reciprocal q points ( 1

Nq
is the weight of each q point), and xq;r is the

vibrational frequency of the r-th phonon branch at the reciprocal
coordinate q.

The equilibrium state under a specified external pressure P
fulfills the relationship

dGtot

dV

����
P;T

¼ 0: ð3Þ

Combining Eqs. (1)–(3), we obtain an expression for the unit-cell
volume

VðP; TÞ ¼ dEeðVÞ
dV

þ P
� ��1

� 1
Nq

X
q;r

Uq;rcq;r; ð4Þ

where Uq;r and cq;r ¼ � V
xq;r

dxq;r
dV are the internal energy and

Grüneisen parameter of the phonon mode (q;r). (To guarantee that
c is calculated from the phonon modes with the same symmetry,
k � p theory is used to identify and match the phonon branches
obtained from different volumes according to the similarity of each
mode’s eigenvector [47].) The physics underlying Eq. (4) is due to
the balance between the external pressure P and internal pressure,
i.e., electronic pressure (Pe ¼ � dEe

dV ) plus the anharmonic phonon

pressure (Pc ¼ � dFph
dV ¼ 1

VNq

P
q;rUq;rcq;r), such that

P ¼ PeðVÞ þ PcðV ; TÞ: ð5Þ
In the quasiharmonic approximation [2–4], x only depends on

V such that the x–V relationship can be described by a Taylor
expansion (up to second order) as

xðVÞ ¼ xðV0Þ þ dx
dV

� �
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where V0 is the reference volume and DV ¼ V � V0. Then, we can
derive the volume dependence of c as

cðVÞ ¼ � V
x
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The calculation of the nth order derivative of x (i.e., dnx=dVn)
requires the phonon spectra of nþ 1 volumes. With Eqs. (4), (6),
and (7), the temperature-dependent unit-cell volume can be
obtained in a self-consistent manner and it is this formalism which
we call herein the self-consistent quasiharmonic approximation
(SC-QHA) method. The complete derivation steps for the SC-QHA
method, as well as the formula in the next section, can be found
in the online Supplemental Material.

The SC-QHA method can also be viewed as an improved nonlin-
ear Grüneisen model that is implemented in a self-consistent way.
In a conventional Grüneisen model [48–51], the linear x–V
relationship usually is considered, and during the calculation of
the thermal-expansion coefficient a ¼ 1

V
dV
dT , the parameters V ;x,

and c are treated as constant. In addition, the zero-point vibration
contribution to V is also absent in the Grüneisen model for aðTÞ.
Although a similar nonlinear x–V relationship as that given in
Eq. (6) has been used by Debernardi et al. for aðTÞ before [52],
the contribution of zero-point vibrations to V were omitted.
Herein, both the zero-point vibrational contribution and nonlinear
x–V relationship are treated in the SC-QHA method (by Eqs. (4)
and (6)).

In principle, when we have an analytical expression for xðVÞ
(Eq. (6)), VðP; TÞ could be directly derived by minimizing the
analytical Gtot (Eq. (1)) with respect to V prior to using Eq. (4). This
approach should have a comparable numerical efficiency as the
self-consistent method. However, the SC-QHA method is a
very convenient analytics tool for which considerable physical
information (as present in Eq. (4)) can be obtained through the
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