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a b s t r a c t

Based on the multi-phase-field (MPF) model reported by Steinbach et al., we constructed a higher-order
MPF model in a previous study that contains a higher-order term and an additional kinetic parameter to
represent the properties of triple junctions (TJs); this model was observed to be suitable for the simula-
tion of 2D grain growth with anisotropic grain-boundary (GB) energy and mobility, which are strongly
dependent on the misorientation angle (Dh). In the current study, we attempt to improve the accuracy
of 3D MPF simulations of anisotropic grain growth by extending this higher-order MPF model such that
it accounts for the properties of quadruple junctions as well as those of TJs. In addition, using the
extended higher-order MPF model, a series of grain-growth simulations are performed for a 3D columnar
structure while considering the anisotropic GB properties, through which the accuracy of the model is
examined in detail. The results confirm that the extended higher-order MPF model enables the
anisotropic GB properties to be handled accurately for wider-ranging Dh than in previous models.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

During the heat treatment of a polycrystalline material, the
internal microstructure evolves through several thermodynamic
phenomena including multiple phase transformations, recrystal-
lization, and grain growth [1–3]. Control over the microstructural
evolution enables superior materials to be produced because the
physical and mechanical properties of polycrystals are greatly
dependent on the microstructure. In general, the fundamental pro-
cess underlying the microstructural evolution is the migration of
grain boundaries (GBs), or grain growth in a broad sense. Thus,
with the aim of systematically predicting the evolution of
microstructure with heat treatment, numerical approaches have
been developed using mesoscale grain-growth models including
the Monte-Carlo model [4–7], cellular automaton model [8–10],
vertex model [11–14], surface-evolver model [15], front-tracking
model [16–18], level-set model [19,20], and phase-field model
[21–25].

Recently, the multi-phase-field (MPF) model proposed by Stein-
bach et al. [26,27] has been frequently used as a prominent model
to simulate polycrystalline grain growth. This model enables the
quantitative prediction of complicated microstructural evolution

in time and space. Additionally, the computation speed of the
model can be significantly increased by using the active parameter
tracking algorithm [28–30] that was proposed by Vedantam and
Patnaik [28], Gruber et al. [31], and Kim et al. [32] independently.
However, the original MPF model has one drawback: in real mate-
rials, the properties (energy and mobility) of GBs exhibit strong
anisotropies, with their variations depending primarily on the
misorientation angle (Dh) between the neighboring grains [1,33–
36]. These anisotropic properties affect both the kinetics and mor-
phological aspects of grain growth [36–40] and, thus, might be
important factors to consider in grain-growth simulations. How-
ever, it is difficult to introduce the anisotropic properties in the
MPF model for wide-ranging Dh because when GB properties with
large differences are introduced in MPF simulations, unnecessary
phases (‘ghost phases [41]’) leak from multiple junctions into
GBs, and consequently, the GB behaviors become unstable. To
address this issue, Garcke et al. [42,43] and Hirouchi et al. [44]
have proposed modified models, which are known as higher-
order MPF models. In these models, the formation of ghost phases
is suppressed using a higher-order term representing the free
energy of triple junctions (TJs). However, the coefficient of the
higher-order term used for the models, which strongly affects the
simulation results, has not been optimized. Moreover, the models
do not account for the decrease in the accuracy due to the strong
anisotropy in GB mobility. Therefore, we developed a novel
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higher-order MPF model [45] by optimizing the coefficient of the
higher-order term and introducing the TJ mobility; the validity of
the model was confirmed via a series of 2D grain-growth simula-
tions with anisotropic GB properties. However, 3D simulations
are essential for simulating actual grain growth [32,33,46], on
which quadruple junctions (QJs) as well as TJs might have a consid-
erable effect [33]. Recently, 3D MPF simulation is becoming easy to
perform by virtue of parallel computing [47–49] and general-
purpose computing on graphics processing units (GPUs) [50–57].
Thus, the improvement of the accuracy of 3D MPF simulation is
believed to be an urgent issue.

In this study, we attempt to improve the accuracy of 3D grain-
growth simulations with anisotropic GB properties by introducing
the properties of QJs to the higher-order MPF model that was pro-
posed in our previous study [45]. First, in Section 2, the higher-
order MPFmodel is extended to account for the QJ properties. Next,
in Section 3, the appropriate ways to determine the simulation
parameters used for the extended higher-order model are exam-
ined. Finally, in the same section, the accuracy of the extended
model using the determined parameters is tested using grain-
growth simulations with Dh-dependent GB properties.

2. Extended higher-order MPF model considering QJ properties

We derive the governing equation of the extended higher-order
MPF model that accounts for the QJ properties. The MPF model rep-
resents a polycrystalline system consisting of N grains using N
phase-field variables; the ith grain is represented by the phase field
/i, which takes a value of 1 in the ith grain, 0 in the other grains,
and 0 < /i < 1 at the GBs. The sum of the phase fields at any spatial
point in the system must be conserved:

Xn
i¼1

/i ¼ 1; ð1Þ

where n is the number of coexisting phases at the point.
When the additional free energy of the TJs and QJs are consid-

ered, the total free energy of the system can be expressed as

F ¼
Z
V

Xn
i¼1

Xn
j¼iþ1

Wij/i/j þ
Xn
k¼jþ1

ðWijk/i/j/k þ
Xn
l¼kþ1

Wijkl/i/j/k/lÞ
(

� a2ij
2
r/i � r/j

)
dV ; ð2Þ

where Wij and aij are the barrier height and gradient coefficient of
the GB between the ith and jth grains, respectively. The second
and third terms on the right-hand side in Eq. (2) are the higher-
order terms representing the energetic contributions of the TJs
[42–44,58,59] and QJs, respectively. These terms play a role in penal-
izing ghost phases at the GBs around the junctions. The coefficients
Wijk and Wijkl are the barrier heights of TJs and QJs, respectively. A
suitable way of determining Wijkl is examined in Section 3; Wijk is
expressed by the formula developed in our previous study [45]:

Wijk ¼
kTJ WGB;max �WGB;medianþWGB;min

2

� �
for 2WGB;median 6WGB;max þWGB;min;

0 for 2WGB;median >WGB;max þWGB;min;

(

ð3Þ
where WGB,max, WGB,median, and WGB,min are the maximum, median,
and minimum barrier heights of the GBs adjoining the TJ, respec-
tively, and kTJ is a constant. The optimum value of kTJ for 3D simu-
lations is examined in Section 3.

The time-evolution equation for /i satisfying Eq. (1) is given by
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where M/
ij is the phase-field mobility of the GB between the ith and

jth grains. The functional derivative of Eq. (2) can be calculated as
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Finally, the time-evolution equation reduces to
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Wij, aij, and M/
ij can be related to the thickness (d), energy (cij), and

mobility (Mij) of the GB through the following equations:

Wij ¼
4cij
d

; aij ¼ 2
p

ffiffiffiffiffiffiffiffiffiffi
2dcij

q
; M/

ij ¼
p2

8d
Mij: ð7Þ

When M/
ij defined in Eq. (7) is substituted into Eq. (6), the

migration of the TJ, ijk, is determined by the linear superposition
of the GB mobilities,Mij,Mjk, and Mki. Thus, when one of the mobil-
ities in the TJ is much higher or lower than the others, it dominates
the migration of the TJ, resulting in the occurrence of artificial
junction drag on the GBs. To avoid this issue, we modify the defi-
nition of M/

ij in TJs (n = 3) as follows by introducing the TJ mobility
Mijk [45]:

M/
ij ¼ M/

jk ¼ M/
ki ¼ p2

8d Mijk

Mijk ¼ Mijxij þMjkxjk þMkixki

)
only for n ¼ 3; ð8Þ

wherexij is the weight function defined as follows using a constant
mTJ and the average of the GB mobilities
MGB;ave ¼ ðMij þMjk þMkiÞ=3:

xij ¼1
2

1� jMij�MGB;avejmTJ

jMij�MGB;avejmTJ þjMjk�MGB;avejmTJ þjMki�MGB;avejmTJ

� �
:

ð9Þ
mTJ represents the strength of the weighting; when mTJ is set to
zero, Mijk is equal to MGB,ave. Further, to accurately express the QJ
behaviors, the QJ mobility, Mijkl, is introduced by extending the for-
mulation of Mijk as follows:

M/
ij ¼ M/

jk ¼ M/
kl ¼ M/

li ¼ p2

8d Mijkl

Mijkl ¼ Mijkxijk þMjklxjkl þMklixkli þMlijxlij

)
only for n ¼ 4;

ð10Þ

xijk ¼1
3

1� jMijk �MTJ;ave jmQJ

jMijk �MTJ;avejmQJ þjMjkl �MTJ;avejmQJ þjMkli �MTJ;avejmQJ þjMlij �MTJ;avejmQJ

� �
;

ð11Þ

where mQJ is a constant and MTJ;ave ¼ ðMijk þMjkl þMkli þMlijÞ=4 is
the average of the TJ mobilities. The optimum values of mTJ and
mQJ for 3D simulations are determined in Section 3.

3. Determination of the parameters and their validations

3.1. Coefficients of the higher-order terms: Wijk and Wijkl

We examine the optimum values of the coefficients of the
higher-order terms in Eq. (6), Wijk and Wijkl, for 3D problems, by
evaluating the accuracy of the extended higher-order MPF model.
As the simulation model, we employ a simple 3D system, illus-
trated in Fig. 1, that contains TJs and QJs; the steady-state bound-
ary velocity, V, is compared with the theoretical value. The domain

78 E. Miyoshi, T. Takaki / Computational Materials Science 120 (2016) 77–83



Download English Version:

https://daneshyari.com/en/article/1559861

Download Persian Version:

https://daneshyari.com/article/1559861

Daneshyari.com

https://daneshyari.com/en/article/1559861
https://daneshyari.com/article/1559861
https://daneshyari.com

