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a b s t r a c t

The effective stiffness of laminate composites can be expressed explicitly and accurately as a function of
several variables such as volume fractions and elastic constants of the constituent phases. Based on the
stiffness function, an optimization procedure is proposed in this paper to maximize the effective Young’s
moduli of laminate composites in both longitudinal and transverse directions with respect to a number of
design variables. By solving such a constrained optimization problem, a laminate composite can be
designed by finding the optimal material properties of the constituent phases and their volume fractions.
The effects of the volume fractions, the Young’s moduli and the Poisson’s ratios of the constituent phases
in the effective composite stiffness are demonstrated through various design cases. It is shown that the
optimized effective Young’s moduli can reach values much higher than the well-known approximated
Voigt estimation. Dramatic increases in the effective stiffness have also been found when the Poisson’s
ratios of the constituent phases approach the thermodynamic limits of �1 and 0.5. It is envisaged that
with the proposed approach and modern fabrication technologies, laminate composites with exceptional
effective stiffness can be easily designed and manufactured.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The elastic properties of composites have been extensively
studied. Various simplified estimations have been proposed on
the elastic matrices of composites, among which the Voigt estima-
tion [1] and the Reuss estimation [2] have been widely adopted
and proven able to provide the upper and lower bounds respec-
tively for the effective bulk and shear moduli [3].

Most isotropic materials have a Poisson’s ratio within a very
narrow range between 1/4 and 1/3 [4]. By neglecting the Poisson’s
effect, an approximated Voigt estimation of the effective stiffness
of a composite can be obtained as the weighted volume average
of those of the isotropic constituent phases [3]. Nevertheless, re-
cent works indicate that this approximated bound can actually
be exceeded [5–7] if the constituent phases have exceptional Pois-
son’s ratios, such as negative Poisson’s ratios [8,9] with which the
material is called auxetic or dilational due to the fact that it will ex-
pand transversally when pulled in one direction. Liu et al. [5]
showed that the effective stiffness of composites can increase be-
yond the approximated Voigt estimation and the Young’s moduli
of the constituent phases, if one of the phases is nearly incompress-
ible, i.e. the Poisson’s ratio approaching 0.5. Kocer et al. [6] and Lim
[7] discovered that the effective stiffness of a two-phase laminate
composite can exceed the approximated Voigt estimation if one

phase has positive Poisson’s ratio and the other phase negative
Poisson’s ratio.

The stiffness is one of the most sought-after material properties
that have practical applications in engineering. Composite materi-
als provide such an opportunity to reach exceptional stiffness by
combining the constituent phases of distinct material properties.
The elastic properties of composites are affected not only by the
Poisson’s ratios of the constituent phases, but also by other factors
such as the Young’s moduli of the constituent phases, the volume
proportion of each phase, and the topology of the material micro
structure, i.e. how the phases are geometrically combined to form
the composite. Based on the conventional layered composite form
of laminate with two phases, Liu et al. [5] and Lim [7] indepen-
dently calculated the composite effective stiffness explicitly with
the variables of the elastic properties of the isotropic laminas
and their volume fractions. In the mathematical point of view, this
forms a basis for calculating the theoretical maximum value of the
effective stiffness of this type of composites.

This paper focuses on two-phase laminates and investigates the
maximum effective stiffness of layered composites. Various cases
are studied to calculate the maximum effective stiffness under dif-
ferent conditions such as prescribing or not prescribing the elastic
properties of the constituent phases. Exceptional effective stiffness
will be obtained even if the Poisson’s ratios of the constituent
phases are not near the limits of �1 and 0.5, by mathematically
finding the suitable constituent phases and assigning a proper
volume proportion.
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2. Calculation of effective stiffness

The laminate composite with isotropic constituent phases is a
transversally isotropic material, i.e. the material properties are iso-
tropic in the layered plane. Therefore there are two independent
effective Young’s moduli in two directions respectively: the longi-
tudinal stiffness and the transverse stiffness. Two corresponding
loading conditions for testing these two effective Young’s moduli
are shown in Fig. 1.

The Hooke’s law in the compliance form for the laminate com-
posite indicates the constitutive equations and is expressed in the
following compact form.
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where e and r are the strain and stress vector respectively, S is the
compliance matrix. Due to the simple loading conditions, the effec-
tive stiffness can be easily obtained from the inverse of correspond-
ing item in the compliance matrix. For instance, the effective
transverse stiffness can be obtained by 1/S33, namely rzz/ezz since
rxx and ryy are both zero under the loading in Fig. 1(b). By solving
a system of equations involving the constitutive equations (Eq.
(1)), static equilibria and kinematics [5], the effective Young’s
moduli can be explicitly calculated based on the Young’s moduli,
Poisson’s ratios and the volume fractions of the two phases. Since
the derivation is not the concern of this paper and can be referred
to Liu et al. [5], the explicit formulae are given directly in the
following.
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where Eeff
x and Eeff

z are the longitudinal and transverse effective
Young’s moduli, EA and EB are the Young’s moduli of the two isotro-
pic phases A and B, vA and vB are the Poisson’s ratios, and UA and UB

are the volume fractions respectively.
It is seen that both effective Young’s moduli are functions of six

unknowns. However, the volume fractions of the two phases are
not independent – they add up to 100%, i.e.

/B ¼ 1� /A ð4Þ

Furthermore, it is obvious that the effective stiffness of the com-
posite will increase accordingly if we increase the Young’s modulus
of either phase. Therefore, it is beneficial to define a normalized
effective stiffness by setting the Young’s modulus EA as a constant
reference. As a result, EA will drop out from the formulae of the
effective stiffness. Herein, we define the normalized effective
Young’s moduli in the longitudinal and transverse directions as
follows.

Eeff
x ¼

Eeff
x

EA
ð5Þ

Eeff
z ¼

Eeff
z

EA
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In the meantime, extra factors a and b are introduced to replace
the Young’s modulus EB for a clearer form of the formulae which is
shown later.

a ¼ 1
b
¼ EB

EA
ð7Þ

By substituting Eqs. (4)–(7) into Eqs. (2) and (3) respectively, we
finally obtain the normalized effective Young’s moduli as functions
of four unknowns in the following.

Eeff
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Eeff
z ð/A;vA;vB; bÞ ¼

1

/A þ ð1� /AÞb� 2/Að1�/AÞðvA�bvBÞ2
ð1�vAÞð1�/AÞþð1�vBÞ/Ab

ð9Þ

3. Optimization for maximum effective stiffness

3.1. Problem statement

It is known from the strain energy formulation that the Pois-
son’s ratios vA and vB of the two isotropic phases range within
the domain (�1, 0.5). Besides, it is obvious that the volume fraction
UA falls in the domain [0, 1]. In an optimization problem formula-
tion, the above unknowns are taken as the design variables to
search for the objective function, which in this case, is either of
the normalized effective stiffness. The feasible domains of UA, vA

and vB are then implemented as constraints. On the other hand,
it is envisaged that the effective Young’s moduli are monotonically

increasing functions of EB, and thus are monotonic with a for Eeff
x

and b for Eeff
z . Therefore it is practical to treat a and b as prescribed

constants, leaving only three unknowns for the effective stiffness
functions: UA, vA and vB. Then the maximization problem of the
normalized effective longitudinal stiffness can be formulated as
follows.

Find f/A;vA;vBg; maximize Eeff
x which is defined in Eq: ð8Þ

ð10Þ

subject to

0 � /A � 1 ð11Þ

�1 < vA < 0:5 ð12Þ

�1 < vB < 0:5 ð13Þ
On the other hand, the complex form of the formula for the nor-

malized effective transverse stiffness brings unnecessary difficul-
ties for differentiating that is needed to solve for the function

Fig. 1. The loading conditions for the two effective Young’s moduli: (a) effective
longitudinal stiffness; (b) effective transverse stiffness.
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