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Wepresent a robustmethod for automating removal of “segregation artifacts” in segmented tomographic images
of three-dimensional heterogeneous microstructures. The objective of this method is to accurately identify and
separate discrete features in composite materials where limitations in imaging resolution lead to spurious con-
nections near close contacts. The method utilizes betweenness centrality, a measure of the importance of a
node in the connectivity of a graph network, to identify voxels that create artificial bridges between otherwise
distinct geometric features. To facilitate automation of the algorithm, we develop a relative centrality metric to
allow for the selection of a threshold criterion that is not sensitive to inclusion size or shape. As a demonstration
of the effectiveness of the algorithm, we report on the segmentation of a 3D reconstruction of a SiC particle rein-
forced aluminum alloy, imaged by X-ray synchrotron tomography.
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1. Introduction

The experimental techniques for characterizing a material's micro-
structure in three dimensions include atom probe tomography [1], elec-
tron tomography [2], serial sectioning followed by optical microscopy
[3,4], and X-ray tomography [5,6]. Among these, 3D atom probe tomog-
raphy provides resolution at the atomic detail, but as a result, only very
small volumes can be analyzed. Serial sectioning techniques can analyze
larger volumes, also at relatively high resolution, however these tech-
niques are extremely time consuming and are destructive. In contrast,
X-ray tomography can be used to analyze a significantly larger volume
of a material, providing statistically significant information at typical
resolutions of 1 μm, and recent advances have enabled resolutions of
tens of nanometers to be achieved [7]. X-ray tomography is particularly
attractive as it is a non-destructive technique requiringminimal sample
preparation [8], and thus has been applied to characterize microstruc-
tural evolution during deformation in materials such as metal matrix
composites [9] and Sn-based solders [10].

Due to limited resolution in X-ray tomography, it can be difficult to
distinguish between different particles or inclusions in close proximity.
As a consequence, neighboring but otherwise separate particles may

erroneously appear to be connected. These artificial connections will
not generally affect computations of average composite properties,
such as the elastic moduli, that depend primarily on the volume frac-
tions of the constituent phases. Theymay, however, have a strong influ-
ence on properties sensitive to extreme values, such as fatigue strength
and fracture toughness, which are sensitive to particle clusters and/or
the overall spatial distribution of particles [11]. In damage evolution
simulations, narrow volumes formed by spurious connections will be
a point of artificially high stress concentration that may lead to predic-
tions of cracks at reduced loads or fewer cycles than would occur in
the actual microstructure. To improve strength predictions, geometry
segmentation of the tomographic data is needed to remove these spuri-
ous bridges connecting discrete particles. Moreover, as the capabilities
and resolution of imaging technologies are rapidly improving, manual
geometry segmentation is becoming increasingly cumbersome and in-
feasible. Thus, the objective of thiswork is to develop a robust algorithm
for geometry segmentation of material microstructure from tomo-
graphic image datasets.

We first briefly summarize the current capabilities of geometry seg-
mentation. Ketcham developed the BLOB3D computer code to separate
contacting objects in X-ray tomography data of geological specimens
[12]. BLOB3D uses the watershed algorithm [13] to separate objects in
grayscale images, and erosive operations to remove connective vol-
umes. Proussevitch developed an improved erosion scheme to separate
individual convex objects by peeling away sequential layers of voxels
until narrow bridges disappear [14]. In general, erosion methods are
most effective for convex shapes with aspect ratios near unity. Zhong
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proposed a segmentation algorithmextending thewatershed algorithm
to further segment images using local concavities in order to identify
slender particles [15]. This method, however, was only implemented
in two dimensions, and relies on a-priori knowledge about the shape
of the particles.

More generally, geometry segmentation can be thought of as a
clustering or partitioning problem, and thus as context for
this work, we present a brief survey of partitioning algorithms. Com-
mon algorithms for partitioning include k-means clustering [16], hi-
erarchical clustering schemes [17], and density-based clustering
methods [18,19]. K-means clustering is a distance-based approach
that partitions a dataset of elements into clusters while minimizing
the distances to the centroid of the cluster to which they belong. A
major drawback of k-means clustering is that the number of clusters
is an input to the algorithm, and thus for partitioningmicrostructural
information, diagnostic checks may be required to estimate and up-
date the number of particles in a voxel dataset. Furthermore, the k-
means algorithm is optimal for spherical clusters of similar size,
and thus, erroneous clusterings can be generated when particles
have large aspect ratios or non-convex geometry [20]. In hierarchical
clustering schemes, clusters of elements are either merged or split
based on a measure of distance or similarity between each pair of el-
ements until a threshold is met. The weakness of such an approach is
that the matrix of element distances scales as the square of the num-
ber of elements, in the present case, the number of voxels within a
phase. Density-based clustering is a more recent approach that
groups together points that are closely packed together, utilizing
local point densities to identify points as internal to clusters, outliers,
or boundaries of clusters. Although density-based clustering ap-
proaches do not require one to specify the number of clusters and
can find arbitrarily shaped clusters, the method is not deterministic
in that the results are dependent on the starting point.

In this work, we develop a new method for geometry segmenta-
tion based on the concept of betweenness centrality [21], a mea-
sure of the importance of a node in a graph network. More
specifically, the betweenness centrality is the fraction of shortest
paths between nodes in a network that traverse a given node
[22]. The centrality concept has been applied in various problems,
including ecological studies of pollination networks [23], network
mapping of the human brain [24] and biological studies of protein
networks [25]. In the context of geometry segmentation, we test
how well the betweenness centrality can serve as a metric for iden-
tifying artificial connections between nearly touching particles in
segmented images. As betweenness centrality measures connectiv-
ity rather than position, our method bears similarities with densi-
ty-based approaches. However, as the betweenness centrality is
evaluated for all nodes in the network simultaneously, the method
can be designed to be deterministic and does not depend on a
starting position. Moreover, the centrality-based geometry seg-
mentation is feasible for realistic networks containing millions of
vertices due to the recently developed Brandes' algorithm [26].
Brandes' algorithm greatly reduces the effort required to compute
the betweenness centrality for sparse graph networks with O(VE)
time complexity, where V is the number of vertices and E is the
number of edges.

2. Methodology

In this section we describe a method for segmenting 3D voxelized
microstructures for finite element simulations. For improved perfor-
mance, the method is applied in several stages: a first pass that
quickly segments non-contiguous voxel sets, which are then each
segmented using the betweenness centrality measure, and then a
final pass that enforces a minimum separation distance between dis-
crete particles.

2.1. Centrality-Based Segmentation

The internal geometry of each phase within a heterogeneous mate-
rial can be approximated by the set of voxels contained within the
phase.

Sα ¼ i; j; kð Þ : xijk∈Ωα
� � ð1Þ

whereΩα denotes the subdomain containing phase α, and each voxel is
represented by a 3-tuple of integers. The location of each voxel is de-
fined by:

xijk ¼ x0 þ iaþ jbþ kc; ð2Þ

where x0 is the origin of the domain, and a, b, and c are the cell vectors
connecting adjacent voxels.

Beginningwith a voxel set defining a phase, an initial clustering step
is performed to separate voxels into non-contiguous clusters. Voxels are
considered contiguous if they share a face, but not if they share an edge
or corner, i.e. in three dimensions, each voxel has only six connected
neighbors. As a result of limited imaging resolution or poor contrast be-
tween adjacent particles, these initial sets of voxels often contain more
than a single particle connected through artificial bridges. Geometry
segmentation based on betweenness centrality is then applied to detect
and eliminate these spurious connections.

After initially separating voxels into non-contiguous clusters, each
set of clusters is analyzed to detect whether it is composed of a single
particle or multiple particles connected by spurious bridges. For this
purpose, we construct an unweighted, undirected graph network such
that each voxelwithin a cluster is a node and edges are defined between
all adjacent voxels. Fig. 1 illustrates the creation of graph networks for a
domain containing two non-contiguous clusters. We note that the con-
struction of the graph networks does not involve the physical coordi-
nates of each voxel, but only the relative connectivity between voxels.

In order to identify voxels that form artificial bridges between parti-
cles, the betweenness centrality is calculated on each node of the con-
structed graph networks. The betweenness centrality is a metric that
indicates the relative importance of a node in the connectivity of a net-
work. In a graph with V vertices, the betweenness centrality of vertex v
is defined according to Freeman [21] as:

g vð Þ ¼
X

s≠t≠v∈V

σ st vð Þ
σ st

; ð3Þ

where σst is the number of shortest paths between each vertex s∈V and
t∈V, andσst(v) is the number of shortest paths passing through vertex v.
The key concept is illustrated in Fig. 2, in which two particles are con-
nected by a narrow bridge. As every path from voxels in particle 1
must traverse the voxels in the bridge to reach the voxels particle 2,

Fig. 1. Initialization of graph networks from phase voxel sets, (a) connectivity and graph of
the neighbors around a single voxel, (b) example microstructure with two particles
embedded in a matrix, (c) resulting graphs constructed from contiguous sets of particle
voxels.
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