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a b s t r a c t

We take a theoretical investigation on the reciprocal property of a class of 2D nonlinear photonic qua-
sicrystal proposed by Lifshitz et al. in PRL 95, 133901 (2005). Using the rectangular projection method,
the analytical expression for the Fourier spectrum of the quasicrystal structure is obtained explicitly. It is
interesting to find that the result has a similar form to the corresponding expression of the well-known
1D Fibonacci lattice. In addition, we predict a further extension of the result to higher dimensions. This
work is of practical importance for the photonic device design in nonlinear optical conversion progresses.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the 2D quasicrystals (2DQC) have become a
focus in the structure design of nonlinear photonic crystals [1–6].
Some typical 2DQC structures such as Penrose tiles and polygonal
quasicrystals with 8-, 10-, or 12-fold rotational symmetry have
been researched in detail [7–9]. These 2DQC can be regarded as a
natural extension of 1D quasiperiodic structures, which have made
remarkable progresses in solving the multiple quasi-phase-
matching problem in nonlinear optics [10–18]. Compared with 1D
quasiperiodic structures, the 2DQC can provide multiple reciprocal
vectors in a 2D plane simultaneously, which makes it possible to
phase-match for both collinear and non-collinear optical conver-
sion progresses. However, the reciprocal vectors of the 2DQC with
a given symmetry are usually linearly correlated. Thus, it is not
easy to employ them for an arbitrary nonlinear conversion pro-
gress. To solve this problem, research on the quasicrystal structure
without rotational symmetry is necessary. Lifshitz et al. foresaw
this and proposed a general method for the structure design of 2D
nonlinear photonic quasicrystals [1]. In their work, a class of 2DQC
without any rotational symmetry is constructed with a generalized
dual-grid method and the obtained structure is capable of phase-
matching for arbitrary 2D nonlinear optical conversion processes.

The Fourier spectrum for the 2DQC structure can be also obtained
with the dual-grid method, which is written as a complicated
expression contains integrals and convolutions.

As is well-known that the projection method is commonly used
to analyze the reciprocal property of quasicrystals [19], which is
flexible to construct the quasicrystal structures as well. In addition,
it enables us to obtain analytical solutions of both the position of
reciprocal vectors and the related Fourier coefficients. In this pa-
per, we found that the projection method might be more con-
venient to analyze the reciprocal property of the above 2DQC
structure. With this method, the analytical expression for the
Fourier spectrum of the structure is obtained, which is compatible
with the result reported in Ref. [1] but with a simple and explicit
form. Furthermore, we found that the resulting expression is si-
milar to the corresponding expression of the well-known 1D Fi-
bonacci lattice. This result is useful for the structure design and
optimization in the application of nonlinear conversion processes
[10,11,14].

2. Theoretical analysis

Let us start the analysis with a simple 1D quasicrystal, that is,
the Fibonacci structure, which can be obtained by the projection
method from a 2D square lattice to 1D with a special projection
angle [19]. During the projection process, the projection area and
the projection angle play an important role. The Fourier spectrum
of 1D Fibonacci optical superlattice can be obtained with this
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method [16]:
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where DA and DB are the widths of the two building blocks of the

Fibonacci structure, τ = +1 5
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The 2DQC structure constructed with the dual-grid method in

Ref. [1] can also be obtained with the projection method, where a
projection from the 3D cubic lattice to a 2D plane is needed.
However, since the structure gets more complicated, it is easy to
cause confusion when deducing the structural parameters with
the cubic lattice. We found that it will be more convenient if a
rectangular lattice is used instead, which is helpful for finding the
unique relation of the projection parameters and the structural
parameters of the quasicrystal structure.

To make it clear, we firstly choose a suitable projection window.
As given in Fig. 1, the −x y plane is set to be the projected plane,
and ⇀a1,

⇀a2 and ⇀a3 are defined as the basic vectors in 3D rectangular
lattice, whose projections to the −x y plane are parallelogram
vectors ⇀r1 ,

⇀r2 and ⇀r3 . The projection area is an infinite plate per-
pendicular to the z axis. Its thickness can be given by:

θ θ θ= + + ( )d a a acos cos cos 21 1 2 2 3 3

The projection angles θ1, θ2, S2 are the angles between S3, S1,
⇀a3

and z axis, which depend on the structural parameters. We mainly
focus on the projection result in −x y plane, which is a 2D quasi-
periodic lattice composed of several kinds of parallelograms with
different shapes. It is clear from Fig. 1 that the projected plane can
be constructed from three components A, B and C (which are
yellow, blue and green respectively) and each of them is a paral-
lelogram. They are supposed to be the fundamental components of
the 2D quasicrystals. The areas of A, B, C (denoted as S23, S12 and
S31, respectively) are important parameters used in the projection,
which can be obtained by:
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The parameter S in Eq. (4) is defined for convenience, which is
related to the average area of the three components. In addition,
the ratios of the three components are also needed to determine
the structure, which can be expressed as follows while supposing
that the number of A, B and C is A n, B n and C n [17,18]:
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In order to give a general analysis, we choose a rectangular
lattice represented by a set of distributed Dirac delta functions
[18]:
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As the projection area is an infinite plate restricted by the
thickness d, we can represent it by:
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where the rect function is defined by:
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With the lattice function ( )⇀u r and the area function ( )⇀a r , we

can define the position function ( )⇀f r , which represents the po-
sition of the lattices inside the projection area:

( ) ( ) ( )⇀ = ⇀ × ⇀
( )f r u r a r 8

According to convolution theorem, the Fourier transformation
of ( )⇀f r can be expressed as:

( ) ( ) ( )⇀ = ⇀ ⊗ ⇀
( )g G U G A G 9
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where ⊗ is the convolution operator, while (⇀)U G and (⇀)A G are the
Fourier transform of the lattice function ( )⇀u r and the area func-

tion ( )⇀a r , respectively, and both of them are known analytically.
Thus, Eq. (9) can be simplified as:
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where ⇀Glmn are the reciprocal lattice points and Glmn
x ,Glmn

y , Glmn
z are

components of x, y, z direction:
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⇀G1,
⇀G2 and ⇀G3 are three basic vectors of the reciprocal lattice,

obeying the following orthogonality relation:

πδ⇀⋅⇀ =a G 2i j ij

Eq. (10) shows the Fourier transform of the projected lattices in
3D, to calculate the required Fourier transform of the 2DQC, we
only need to set =G 0z and multiply the result by a factor of π2
due to the difference between 3D and 2D. Then the result can be
written as:
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Fig. 1. (Color online) The schematic of the projection method to construct the
2DQC. −x y plane is the projected plane, ⇀r1,

⇀r2 and ⇀r3 are projections of ⇀a1,
⇀a2 and

⇀a3 . The projected plane is constructed from three components A, B and C and each
of them is a parallelogram.
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