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a b s t r a c t

We use the SU(3) Schwinger's boson theory to study the spin transport in the S¼1 two-dimensional
ferroquadrupolar Heisenberg model in the square lattice. We calculate the spin conductivity σðωÞ and
analyzed the behavior of the AC and DC spin conductivities. The model presents a bilinear and biqua-
dratic exchange interactions. Our results show that the system is an ideal spin conductor for T40,
because Drude's weight DS (which represents the DC conductivity) is non zero for T40 and the AC
conductivity given by σregðωÞ tends to the infinity when ω-0 which also correspond to the DC limit.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recently has there been an intense attention on the interplay
of antiferromagnetism to high temperature super-conductivity
[1] where a number of measurements were reported in a
member of the pnictide family BaFe2ðAs1� xPxÞ2 as a function of
the isovalent P-doping x. Among the most varied studies, the
two-dimensional ferroquadrupolar Heisenberg model on a
square lattice has been applied to the iron pnictides [2]. Dif-
ferent from quantum spin liquids, spin nematic states exhibit
long-ranged quadrupolar order without conventional dipolar
magnetic order [3]. The phase transitions in the two-
dimensional anisotropic biquadratic Heisenberg model have
been studied recently [4]. The biquadratic term arises from
fourth-order perturbations in the exchange interaction and
normally its value is small. As pointed out by Oitmaa and Hamer
[5] the study of the Heisenberg antiferromagnet with biqua-
dratic exchange interaction goes back to [6,7], where phases of
both dipolar and quadrupolar nature were identified [3]. The
traditional spin wave SU(2) theory is a very good approach for
treating quantum spin models that have a magnetically (dipo-
lar) ordered ground state. However this theory is not adequate
to treat nematic, quadrupolar, octupolar, or higher multipolar
ordering [3].

From an experimental point of view, recently has there been
an intense research about the quantum Hall effect for spins and
the magnon spintronics [8–12]. In these studies often only the
sign differences between related quantities like magnetic fields

and generated spin and charge currents are determined. The spin
transport properties in the two-dimensional spin systems have
been studied theoretically by Sentef et al. [13] who have ana-
lyzed the spin transport in the easy-axis Heisenberg anti-
ferromagnetic model in two and three dimensions, at T¼0.
Damle and Sachdev [14] treated the two-dimensional case using
the non-linear sigma model in the gapped phase. Pires and Lima
[15–17] treated the two-dimensional easy plane Heisenberg
antiferromagnetic model. Lima and Pires [18] studied the spin
transport in the two-dimensional anisotropic XY model using
the SU(3) Schwinger boson theory in the absence of impurities,
Lima [19] studied the case of the Heisenberg antiferromagnetic
model in two dimensions with Dzyaloshinskii–Moriya interac-
tion. Zewei Chen et al. [20] analyzed the effect of spatial and spin
anisotropy on spin conductivity for the S¼ 1=2 Heisenberg
model on a square lattice and more recently, Lima et al. [21] have
studied the spin transport in the site diluted two-dimensional
anisotropic Heisenberg model in the easy plane using the self-
consistent harmonic approximation.

The aim of this paper is to study the spin transport of the two-
dimensional ferroquadrupolar Heisenberg model on a square lattice
with biquadratic exchange interaction using the SU(3) Schwinger
boson theory which is also called as Bond Operator formalism.
Recently, the dynamics structure factor was calculated for this model
using this method in Reference [3].

The plan of this paper is as follows: In Section 2, we discuss the
properties of the model. In Section 3 we present the SU
(3) Schwinger boson formalism. In Section 4 we develop the Kubo
formalism of the linear response to calculate the spin conductivity.
In Section 5, we present the final remarks.
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2. The model

The S¼1 two-dimensional ferroquadrupolar Heisenberg model
on the square lattice is defined by the following Hamiltonian

H¼
X
〈i;j〉

J1ðSi � SjÞþ J2ðSi � SjÞ2
n o

: ð1Þ

where 〈i; j〉 stands for the sum over nearest-neighbor, J1 is the
exchange constant between the nearest-neighbor, J2 is the inten-
sity of the biquadratic term. We consider the value of spin S¼1.
The system is in the ferroquadrupolar phase, where the J1 ¼ J cos
θ and J2 ¼ J sin θ. The θ parameter controls the ratio of these two
couplings. Recently, this model with sin θo0 has been applied to
the iron pnictides [2].

3. The Schwinger boson theory

The SU(3) Schwinger boson formalism has been derived for
treat systems with single ion anisotropy for Papanicolau [22] being
a generalization of the SU(2) formalism. In this formalism we
choose the basis:

jx〉¼ 1ffiffiffi
2

p ðj1〉�j �1〉ÞÞ; jy〉¼ 1ffiffiffi
2

p ðj1〉þj �1〉ÞÞ; j z〉¼ � ij0〉 ð2Þ

where jn〉 are eigenstates of Sz. This set of basis states respect the
time-reversal invariance of the spin-nematic states [3]. The spin
operators are then written via a set of three boson operators tα,
ðα¼ x; y; zÞ defined by

t†x jv〉¼ jx〉; t†y jv〉¼ jy〉; t†z jv〉¼ j z〉: ð3Þ

where jv〉 is the vacuum state. To force single site occupancy on
each site we impose the constraint

t†xtxþt†ytyþt†ztz ¼ 1: ð4Þ

In terms of the t operators we can write

Sx ¼ � i t†ytz�t†zty
� �

; Sy ¼ � i t†ztx�t†xtz
� �

; Sz ¼ � i t†xty�t†ytx
� �

:

The states t†x jv〉 and t†y jv〉, both consist of Sz ¼ 71 eigenstates
and have the average 〈Sz〉¼ 0. This property will preserve the
disorder of the ground state.

In studying the disordered phases, such as the ferroqua-
drupolar phase, it is convenient to introduce two bosonic opera-
tors u† and d†, given by [3]

u† ¼ 1ffiffi
2

p t†xþ ity
� �

; d† ¼ 1ffiffi
2

p t†x� ity
� �

; ð5Þ

and so

j1〉¼ u† jv〉; j0〉¼ t†z jv〉; j �1〉¼ d† jv〉: ð6Þ
We have the constraint condition u†uþd†dþt†ztz ¼ 1. The spin
operators can also be written as

Sþ ¼
ffiffiffi
2

p
t†zdþu†tz

� �
; S� ¼

ffiffiffi
2

p
t†zdþu†tz

� �
; Sz ¼ u†uþd†d: ð7Þ

Schwinger's boson formalism is a mean field approximation
that becomes accurate in the N-1 limit. For the SU(3) Schwinger
boson approach for spins S¼1, the order parameter has eight
components which correspond to the eight generators of the SU
(3) group [3].

H¼H0þH1þH2; ð8Þ
where

H0 ¼ ð1þt4ÞJ sin θ
zN
2
þμ

X
k

u†
i uiþd†i diþt2�1

� �
; ð9Þ

H1 ¼ Jt2 cos θ
X
〈ij〉

u†
i ujþd†i djþh:c:

� �
þ Jð cos θ� sin θÞt2

X
〈ij〉

u†
i d

†
j þd†i u

†
m

� �
;

ð10Þ

H2 ¼ J cos θ
X
〈ij〉

u†
i uiu

†
j ujþd†i did

†
j dj

� �
� Jð cos θ� sin θÞ

X
〈ij〉

u†
i uid

†
j djþd†i diu

†
j uj

� �

þ J cos θ
X
〈ij〉

u†
i d

†
j ujdiþd†i u

†
j djui

� �
: ð11Þ

μis a temperature-dependent chemical potential with the local
constraint S2r ¼ SðSþ1Þ ¼ 2. We obtain the mean field Hamiltonian
making decoupling to the four operator terms

Hmf
2 ¼ �2Jð cos θ� sin θÞ

X
〈ij〉

h
p u†

i d
†
j þd†i u

†
j

� �

þh:c:
i
þzN

2
J cos θð1�t2Þ2þ4Jð cos θ� sin θÞp2
h i

; ð12Þ

where p¼ 〈uiuj〉. This parameter is very small and can be neglec-
ted. The Hamiltonian can be written then in the form

H¼ 1
2

X
k

ψ †
kHααψ kþE0; ð13Þ

where ψ †
k ¼ u†

k d†k u�k d�k

� �
, and

Hαα ¼

Λk 0 0 Λk

0 Λk Λk 0
0 Λk Λk 0
Λk 0 0 Λk

0
BBBB@

1
CCCCA; ð14Þ

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2

k�Δ2
k

q
; ð15Þ

where

E0 ¼
zN
2

J cos θð1�t2Þ2þ4Jð cos θþ sin θÞp2
h i

; ð16Þ

and

Λk ¼ λþ4t2γk cos θ; ð17Þ

Δk ¼ 4t2ð cos θþ sin θÞγk; ð18Þ

γk ¼
1
2
½ cos ðkxÞþ cos ðkyÞ�: ð19Þ

Once the excitation gap is null at k¼ ðπ;πÞ we have the self-
consistent equations

λ¼ �4t2 sin θ

t2 ¼ 2� 1
N

X
k

Λk

ωk
: ð20Þ

We use the SU(3) Schwinger's boson approach [22] to deter-
mine the regular part of the spin conductivity (AC conductivity) or
continuum conductivity.

A spin current appears if there is a gradient of magnetic field

∇ B
!

, through the system. It plays the role of a chemical potential
for spins. One can connect a low dimensional magnet with two
bulk ferromagnetic. They act as reservoirs for spins [12,11]. One
has a spin current flowing through the system if there is a differ-

ence, Δ B
!

, between the magnetic fields at the two ends of the
sample. As we are interested in calculating the longitudinal spin
conductivity, we will add an external space and time-dependent

magnetic field, B
!ðx; tÞ, applied along the ẑ direction to the

Hamiltonian equation (1).
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