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a b s t r a c t

Dielectric elastomer is a soft active material, producing fast deformation under voltage-activation. Under
a specific boundary condition, trussed dielectric elastomer elongates mimicking the behavior of biological
muscle. During this process, dielectric elastomer experiences a snap from one deformation mode to
another, though both at the electromechanical equilibrium states. Based on thermodynamics, models are
established to investigate electromechanical coupling at the two equilibrium states. Particular emphasis is
devoted to establishing the governing equations of the two deformation modes with physical interpreta-
tions. The transition of equilibrium state is discussed, to predict the attainable stable state for application.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Dielectric elastomer is a soft polymer used as a dielectric insulator,
usually in the shape of thin film, and is capable of generating
reversible area expansion strain over 100% when subject to voltage
[1]. Due to the compliance, dielectric elastomer features light weight,
noiseless actuation and extreme stretchability. This feature resembles
the performance of biological muscles, and applications have been
explored in tunable lens [2], soft robots, etc. [3]. However, its low
elastic modulus, of the orders of kPa, would result in an insufficient
force feedback, causing the material susceptible to pull-in instability:
a failure to withstand the excessive electrostatic stress in deformation
[4,5]. Therefore, diverse routes are proposed to strengthen the
dielectric elastomer in order to avert the instability, i.e., by introdu-
cing an extra polymer with a higher stiffness to achieve interpene-
trating polymer networks [6,7], or by doping rigid ceramic of high
permittivity [8,9].

Another effective method has been adopted recently in the
actuator design, where the surface of the dielectric elastomer is
trussed by stiff fibers in parallel. This configuration is inspired by the
fish fin, as Fig. 1(a) shows [10]. With reference to related experiment;
the trussed dielectric elastomer shows a quasi-linear strain in vertical
direction, without pull-in. However, the performance of fiber-trussed
dielectric elastomer (FTDE) varies greatly. For the same materials, the
maximum strain changes from 35% [10,11] to 260% [12], while an
interpretation on the difference has not been proposed. It is also

observed that during elongation, the dielectric elastomer may jump to
another deformation state, showing necking state, with loss of surface
tension in the central area of the membrane [11].

In the current research, we proposed a model, based on
thermodynamics, to develop the equations of state of the FTDE.
A specific material model is employed to study the deformation
and stability, and the results are discussed and concluded with
respect to the corresponding experiments.

With reference to Fig. 1(b)–(c), considering a piece of dielectric
elastomer sheet of original dimensions of L1L2H. Following the
experimental procedures in Ref. [11], we first stretch the sheet
horizontally to width of l2 and maintain the prestretch by attaching
stiff fibers. Consequently, the confinements generate lateral force of P′
that keeps the membrane in tension. The fibers separate the surface
into elementary unit segments of number N, with each area of
ðL1=NÞl2. We then apply a battery with a voltage of Φ and mechanical
load P to the FTDE, which deforms the current dimensions of l1l2h
with accumulated charges 7Q on both surfaces. Note here, without
losing generality, we first idealize the horizontal deformation is
maintained at a constant stretch by P′. The assumption shall be
discussed in the analysis that follows.

The battery, the load, and the elastomer with fibers constitute a
thermodynamic system. During electromechanical deformation,
when the in-plane dimensions increase by δl1 and δl2, the thick-
ness reduces by δh, and the charge increase by δQ , so the free
energy of the DE changes by δF and the free energy of the
thermodynamics system changes by δΨ . Thus

δΨ ¼ δF�Pδl1�P′δl2� l2δP′�ΦδQ : ð1Þ
Define the specific Helmholtz free energy of the material by

Ŵ ¼ F=ðL1L2HÞ, stretches by λ1 ¼ l1=L1, λ2 ¼ l2=L2, and λ3 ¼ h=H,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ssc

Solid State Communications

0038-1098/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ssc.2013.11.033

n Corresponding author at: Department of Materials Science and Engineering,
Xi’an University of Science and Technology, Xi’an, China. Tel.: þ86 290 000 00.

E-mail address: penglonggui@163.com

Solid State Communications 181 (2014) 46–49

www.sciencedirect.com/science/journal/00381098
www.elsevier.com/locate/ssc
http://dx.doi.org/10.1016/j.ssc.2013.11.033
http://dx.doi.org/10.1016/j.ssc.2013.11.033
http://dx.doi.org/10.1016/j.ssc.2013.11.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2013.11.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2013.11.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2013.11.033&domain=pdf
mailto:penglonggui@163.com
http://dx.doi.org/10.1016/j.ssc.2013.11.033


stresses by s1 ¼ P=ðl2hÞ and s2 ¼ P′=ðl1hÞ, electric field by E¼Φ=h,
and electric displacement by D¼ Q=ðl1l2Þ. The stretch in
each segment λ′ is related to the overall vertical stretch as:
λ′¼ ðλ1�ηÞ=ð1�ηÞ, with η being the fiber volume fraction of the
dielectric elastomer in the reference state. Considering the fiber is
electrically inactive and its volume fraction is insignificant [10–12],
we reduce λ′¼ λ1 and do not specifically distinguish the two
variables in the investigation afterward.

The amount of charge on either surface relates to the electric
displacement by Q ¼Dl1l2, so the variation of the charge is

δQ ¼ l1l2δDþDl1δl2þDl2δl1: ð2Þ
The elastomer is taken to be incompressible, where L1L2L3 ¼ l1l2l3
or λ1λ2λ3 ¼ 1. This enables us to regard λ1 and λ2 as independent
variables, so that δλ3 ¼ �λ�2

1 λ�1
2 δλ1�λ�2

2 λ�1
1 δλ2. Dividing both

sides of Eq. (1) by the volume, L1L2H, and using Eq. (2), we obtain
the free energy change in the thermodynamic system

δΨ

L1L2H
¼ δŴ�ðs1þDEÞλ�1

1 δλ1�ðs2þDEÞλ�1
2 δλ2�EδD: ð3Þ

In this model, the Helmholtz free energy is taken to be a function
of the three independent variables, Ŵðλ1; λ2;DÞ, as established in
the nonlinear field theory [13]. So that

δΨ

L1L2H
¼ ∂Ŵðλ1; λ2;DÞ

∂λ1
�ðs1þDEÞλ�1

1

 !
δλ1

þ ∂Ŵðλ1; λ2;DÞ
∂λ2

�ðs2þDEÞλ�1
2

 !
δλ2þ

∂Ŵðλ1; λ2;DÞ
∂D

�E

 !
δD:

ð4Þ
Thermodynamics indicates that the system is in equilibrium

only if the free energy change is minimum,δΨ ¼ 0, for any arbitrary
and independent variations δλ1, δλ2 and δD. This law allows multi

solutions, corresponding to the existence of different equilibrium
states, even coexistence for two states. We first assume the
horizontal stretch being constrained by the fibers at a constant
level λ2, that is δλ2 ¼ 0. Therefore the related production, the
second item on the right hand side of Eq. (4) vanishes, implying
the current free energy change is

δΨ

L1L2H
¼ ∂Ŵðλ1; λ2;DÞ

∂λ1
�ðs1þDEÞλ�1

1

 !
δλ1þ

∂Ŵðλ1; λ2;DÞ
∂D

�E

 !
δD:

ð5Þ
Then we obtain the first set of equations for equilibrium state

s1þED¼ λ1
∂Ŵðλ1; λ2;DÞ

∂λ1
; E¼ ∂Ŵðλ1; λ2;DÞ

∂D
: ð6Þ

We now employ a specific free energy function form for linear
dielectrics with hyper-elasticity

Ŵðλ1; λ2;DÞ ¼ �μ

2
log 1�λ21þλ22þλ�2

1 λ�2
2 �3

Jm

 !
þ 1
2ε

D2: ð7Þ

The first item on the right hand side of Eq. (7) is the Gent strain
energy model, with μ being the shear modulus and Jm being the
extension limit [14]. The second item is the linear electrostatic
energy in dielectric, with ε being the permittivity. Thus, the first
set of equilibrium condition is specialized to the governing
equation as

ðλ1λ2Þ2
Φ

H
ffiffiffiffiffiffiffi
μ=ε

p
 !2

¼ λ21�λ�2
1 λ�2

2

1�ððλ21þλ22þλ�2
1 λ�2

2 �3Þ=JmÞ
�λ1

P
μL2H

: ð8Þ

Eq. (8) suggests that the elastomer deforms in two directions:
vertically and through the thickness, with the horizontal stretch
remaining at the prestretch state. This mode of deformation is

Fig. 1. (Color online) (a) A fiber trussed electric elastomer elongates linearly under voltage (Ref. [10]). According to experiments, we sketch the models as follows. The
dielectric elastomer is prestretched first from (b) its original dimensions, with (c) stiff fibers to maintain the prestretch. (d) Subject to a voltage and mechanical load, the fiber
trussed-dielectric elastomer (FTDE) deforms to the current dimensions.
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