Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Magnetic and magnetocaloric properties of $Mn_{0.98}Fe_{0.02}P_{1\text{-}x}As_x$ compounds

Naikun Sun^{a,*}, Zengxin Ren^a, Longhai Shen^a, Jie Guo^a, Pingzhan Si^b

^a School of Science, Shenyang Ligong University, Shenyang 110159, China
^b College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China

ARTICLE INFO

Article history: Received 17 May 2016 Received in revised form 27 July 2016 Accepted 19 August 2016 Available online 21 August 2016

Keywords: Metals and alloys Mechanical alloying Magnetic transitions Magnetocaloric effect Hysteresis

ABSTRACT

MnP has been subject of considerable attention due to its wealth of magnetic phases and complex magnetic transitions in the presence of a magnetic field and at high pressure. In the present polycrystalline $Mn_{0.98}Fe_{0.02}P_{1-x}As_x$ (with x = 0, 0.05 and 0.1) compounds, prepared by mechanical milling, a slight Fe doping lowers the Curie temperature T_C from 291 K for MnP to 270 K and the T_C is increased remarkably to 295 K through further replacing P by a small amount of As. In accordance with the ferromagnetic-paramagnetic transition, magnetocaloric effect (MCE) without thermal hysteresis is observed over a wide temperature range around room temperature. The maximum value of the magnetic-entropy change is 2.4 J/kg K for $Mn_{0.98}Fe_{0.02}P_{0.9}As_{0.1}$ at 300 K for a field change from 0 to 5 T. In addition, around the transition temperature of the ferromagnetic phase to screw phase, an external field can induce a first-order magnetic transition from the screw state to fan state and, for $Mn_{0.98}Fe_{0.02}P$, an inverse MCE with a maximal magnetic-entropy change of 3 T at 92 K has been found.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

At ambient conditions, MnP has the orthorhombic B31-type of crystal structure and exhibits two successive first-order magnetic transitions upon cooling: a transition from the paramagnetic (PM) to the ferromagnetic (FM) state at $T_C = 291$ K, and then a second transition to a screw (SCR) state at $T_s = 47$ K [1,2]. In the SCR state, the Mn spins have rotated in the bc plane, with a propagation vector q along the a axis [3]. Hydrostatic-pressure studies on MnP have shown that both T_s and T_c decrease with increasing pressure [4]. Upon increase of the pressure to 8 GPa the long-range magnetic order vanishes and the compound becomes superconducting [5]. In the presence of external magnetic fields, around T_s MnP shows a variety of magnetic structures, including FM, SCR, and fan (FAN) structure [6]. In the FAN structure, the spin does not perform a full rotation in *bc* plane but, instead, it oscillates around the *b* axis like a fan [7]. Based on the wealth of magnetic phases, MnP-based compounds exhibit interesting physical properties [8,9]. Very recently, a positive magnetoresistance ratio as large as 126% was observed at 2 K at 5 T in MnP_{0.8}B_{0.2} [10] and pressure-induced superconductivity with $T_{sc} = 1$ K has been found in MnP, the first Mn-based superconductor [5]. In particular, a room-temperature magnetocaloric effect (MCE) originating from strong magnetocrystalline anisotropy with a maximal magnetic-entropy change $\Delta S_m = 6$ J/ kg K for a field change of 5 T, has been found for a MnP single crystal [7,11].

Thus far, substitution of transition-metal elements, such as Fe and Cr [2,12], for Mn and B for P [10] lowers the T_C of MnP. In this paper, polycrystalline Mn_{0.98}Fe_{0.02}P_{1-x}As_x compounds have been prepared by simple mechanical-milling process. Slight doping of 10% As for P remarkably increases the T_C of 270 K for Mn_{0.98}Fe_{0.02}P to 295 K and a room-temperature MCE without thermal hysteresis was found with $\Delta S_m = 2.4$ J/kg K at 300 K for a field change of 5 T in Mn_{0.98}Fe_{0.02}P_{0.9}As_{0.1}. As doping shifts the T_s of MnP to lower temperatures and simultaneously increases the thermal hysteresis of the SCR-FM transition. Few references have reported MCEs originating from a SCR-FM transition [13]. In the present Mn_{0.98}Fe_{0.02}P_{1-x}As_x compounds, around T_s , an external field can induce a first-order magnetic transition from the SCR state to the FAN state and, at 92 K, an inverse MCE with $\Delta S_m = 0.67$ J/kg K for a field change of 3 T for Mn_{0.98}Fe_{0.02}P has been found.

^{*} Corresponding author. E-mail address: naikunsun@163.com (N. Sun).

2. Experimental

Polycrystalline $Mn_{0.98}Fe_{0.02}P_{1-x}As_x$ compounds with x = 0, 0.05 and 0.1 have been prepared by mechanical milling to avoid evaporation of As or P followed by long reaction-sintering heat treatment [14]. Mixtures of 5 g of Mn, Fe, P and As powders with purity of 99.9% were sealed in hardened-steel vials with steel balls of 12 mm diameter in a glove box filled with high-purity argon. The ball to powder weight ratio is 20:1. Mechanical alloying of the mixtures was carried out for 5–50 h using a high-energy ball-mill machine with a rotational speed of 800 rpm. During the milling process, not any stop was made. The mechanically alloyed powders were first slowly heated to 200 °C and held at this temperature for 3 h in a vacuum furnace. After this, the powders were annealed at 700 °C for another 3 h in an evacuated silica tube and then gradually cooled to room temperature.

X-ray diffraction (XRD) measurements of the $Mn_{0.98}Fe_{0.02}P_{1-x}As_x$ compounds were performed on a Rigaku DMAX/2000 diffractometer and a rotating Cu target was used with a voltage of 50 kV and a current of 150 mA. The magnetic properties were measured at applied magnetic fields up to 6 T by means of a superconducting quantum interference device (SQUID) magnetometer. The morphology and size distribution of the samples were examined by means of a Hitachi-3400N scanning electron microscope (SEM).

3. Results and discussion

3.1. Phase formation and structure

Earlier, polycrystalline MnP-based compounds have been synthesized by a long reaction-sintering treatment at about 1100 °C for more than one week [12]. Single-phase MnAs-based compounds have been successfully prepared in our previous work by a simple and time-saving mechanical-milling process [13]. In order to obtain single-phase MnP phase by the mechanical-milling method, we have first optimized the milling time. Fig. 1(a) shows the XRD profiles of selected reflections of Mn_{0.98}Fe_{0.02}P samples with milling times varying from 5 to 50 h. The samples consist of orthorhombic MnP phase and hexagonal Mn₂P phase. Clearly, in the sample milled for 5 h, Mn₂P phase is the dominant phase with a weight fraction of 63%. Upon further increase of milling time, the intensities of the MnP phase reflections increase, indicating precipitation of a large amount of MnP phase from the Mn₂P phase. As shown in Fig. 1(c), the proportion of MnP phase reaches an optimum of 93% for the sample at a milling time of 24 h. With further increase of milling time, the Mn₂P phase precipitates. It is understandable that, in any milling process, part of the energy delivered to the material is stored as thermal energy which leads to a local increase of temperature of the powders, which influences the formation of the MnP and Mn₂P phases. Similar phase formation and decomposition has been found in the milling process of MnBi [15]. In view of the evaporation of P, an excess (1%–3%) of P was added and then the samples were milled for the optimal 24 h to obtain single-phase MnP-phase compounds without secondary phases such as Mn₂P or Mn_{5.64}P₃ [16]. The XRD patterns of the samples and the weight fraction of Mn_2P are shown in Fig. 1(b) and (d).

Fig. 2(a) shows the XRD pattern of the as-prepared $Mn_{0.98}Fe_{0.02}P_{1-x}As_x$ compounds. It can be seen that upon substitution of As for P, the reflections of the orthorhombic *B*31-type structure shift to lower angles, indicating larger lattice parameters. The Rietveld profile refinement method [17] was used in order to determine the structural data as reported in Table 1. It is worth noting that the lattice parameters, a = 5.93 Å, b = 5.28 Å and c = 3.19 Å of $Mn_{0.98}Fe_{0.02}P_{0.9}As_{0.1}$ are larger than those of MnP with a = 5.92 Å, b = 5.26 Å and c = 3.17 Å [7]. Fig. 2(b) shows the

surface morphology of the sample prepared by mechanical milling. The SEM image shows that the $Mn_{0.98}Fe_{0.02}P_{0.9}As_{0.1}$ grains are nearly spherical and there exist some agglomerations with lighter contrast. This may originate from the presence of some small amount of secondary phases, possibly Mn_2P phase, which cannot be detected by XRD. Higher manganese silicide with composition of $MnSi_{1.74}$, which was prepared by mechanical milling for 54 h [18], show very similar morphology and agglomerations as the present $Mn_{0.98}Fe_{0.02}P_{0.9}As_{0.1}$ sample.

In case of manganite, magnetic and magnetocaloric properties are primarily related to the ratio of Mn^{3+}/Mn^{4+} [19]. Usually, the Mn^{4+} amount is tuned by aliovalent cation doping on the A site of the manganite perovskite structure. Another way to change the ratio is the variation of the oxygen content [20]. In order to check the effect of the substitution of As for P on the percentage of Mn cations, the valence of the Mn atoms has been studied by X-ray photoelectron spectroscopy (XPS). The binding energy peak for Mn^{4+} was not observed in the XPS spectrum (not shown here), and the percentage of Mn^{3+} does not change after substitution. In the MnP type *T*(P, As) alloys (*T* = Mn, Fe, Co, Cr), the valance state of As and P is -3 and the valance state of transition metals is +3 [12]. In addition, FeAs is a stable compound with the same MnP orthorhombic structure [21]. So it is well expected that the substitution does not influence the percentage of Fe cations.

3.2. Magnetic properties

To investigate the effect of As and Fe doping on T_s and T_c of MnP, temperature dependence of the magnetization of the Mn_{0.98}Fe_{0.02}P_{1-x}As_x was measured from 10 to 350 K in a field of 0.02 T in a zero-field cooling process (ZFC) and in a field-cooling process (FC) (as shown in Fig. 3 (a) for $Mn_{0.98}Fe_{0.02}P$, (b) for $Mn_{0.98}Fe_{0.02}P_{0.95}As_{0.05}$ and (c) for $Mn_{0.98}Fe_{0.02}P_{0.9}As_{0.1}$). It can be clearly seen that the FC results display a comparatively large residual magnetization of more than $0.7 \text{ Am}^2/\text{kg}$ at 10 K, showing SCR behavior at low temperatures. The M(T) curves of the three samples are very similar: in the ZFC process, upon warming, the magnetization increases and then reaches a maximum, showing the SCR-FM transition. With further increase of the temperature, the magnetization decreases and an FM-PM transition occurs at T_C. The phase-transition temperatures, T_s and T_c are defined as the temperatures at which the first derivative of the magnetization with respect to temperature (dM/dT) has its maximum and minimum value, respectively (as shown in the inset of Fig. 3). Substitution of 2% Fe lowers the T_C of MnP from 291 K to 270 K and, in contrast, the substitution of As for P remarkably shifts T_C to higher temperatures of 285 K for x = 0.05 and 295 K for x = 0.1. Meanwhile, upon the substitution of As for P, T_s decreases remarkably from 100 K for Mn_{0.98}Fe_{0.02}P to 70 K for Mn_{0.98}Fe_{0.02}P_{0.9}As_{0.1}, as shown in Table 1. The values for T_s and T_c of Mn_{0.98}Fe_{0.02}P are in good agreement with previous work [2,12].

It is worth noting that the thermal hysteresis of the SCRM-FM transition increases from 20 K for $Mn_{0.98}Fe_{0.02}P$ to as much as 50 K for $Mn_{0.98}Fe_{0.02}P_{0.9}As_{0.1}$, which confirms the first-order nature of the SCR-FM transition [7]. In contrast, the ZFC and FC curves around $T_{\rm C}$ for the three samples completely overlap, indicating absence of thermal hysteresis. First-order transitions generally show a large change of magnetization around the transition temperature over a small temperature range and consequently have a larger MCE than second-order transitions. However, large thermal hysteresis confines the practical use of the MCE based to the first-order transition [22,23]. Consequently, in this respect, the present $Mn_{0.98}Fe_{0.02}P_{1-x}As_x$ compounds showing a first-order FM-PM transition with no hysteresis may be a good candidate for room-temperature magnetic refrigeration.

Download English Version:

https://daneshyari.com/en/article/1604962

Download Persian Version:

https://daneshyari.com/article/1604962

Daneshyari.com