Journal of Alloys and Compounds 656 (2016) 259-262

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Structure and magnetic properties of melt-spun $Tb_{0.2}Nd_{0.8}(Fe_{0.8}Co_{0.2})_{1.9}$ compound

ALLOYS AND COMPOUNDS

癯

Z.Y. Chen^a, Y.G. Shi^{a,*}, L. Wang^a, Q. Pan^a, H.F. Li^b, D.N. Shi^a

^a Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China ^b State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

ARTICLE INFO

Article history: Received 14 August 2015 Received in revised form 22 September 2015 Accepted 24 September 2015 Available online 30 September 2015

Keywords: Magnetic properties Melt spin Cubic laves phase Magnetostriction

ABSTRACT

High-Nd content $Tb_{0.2}Nd_{0.8}(Fe_{0.8}Co_{0.2})_{1.9}$ cubic Laves compound which could not be prepared by annealing its as-cast ingot was successfully fabricated by melt-spinning and subsequent lowtemperature annealing. The effects of wheel speed and annealing temperature on the structure and magnetic properties of $Tb_{0.2}Nd_{0.8}(Fe_{0.8}Co_{0.2})_{1.9}$ ribbons are investigated. The ribbons with single cubic Laves phase were obtained at a wheel speed of 40 m/s and subsequent annealing temperature of 773 K. The average grain size decreases with the increase of the wheel speed from 10 m/s to 40 m/s. The easy magnetic direction of $Tb_{0.2}Nd_{0.8}(Fe_{0.8}Co_{0.2})_{1.9}$ Laves phase lies along [111] at room temperature, which was confirmed by Mössbaure spectra. Meanwhile, the resin-bonded ribbons obtained at a wheel speed of 40 m/s have a magnetostriction of 321 ppm at room temperature. This work demonstrates an alternate way to synthesize the metastable high-Nd content cubic Laves phase magnetostrictive compounds under ambient pressure other than high-pressure annealing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The C15 cubic Laves RFe_2 (R = rare earth) magnetostrictive compounds, such as, Terfenol-D $(Tb_{0.27}Dy_{0.73}Fe_2)$ and Tb_{0.15}Ho_{0.85}Fe₂, have been widely applied in sonar transducer, sensors and actuators, owing to their function of converting electrical energy to mechanical energy [1,2]. Considering the much richer mineral resources of Nd than heavy rare earths and large theoretic magnetostriction of NdFe₂ (2000 ppm at 0 K [1]), much attention has been paid to the synthesize and study the magnetostrictive properties of Nd-contained cubic Laves compounds in the past few years [3–10]. The same with HoFe₂ and DyFe₂, the easy magnetic direction (EMD) of NdFe2 lies along [100] at room temperature [11]. Therefore, Tb_{1-x}Nd_xFe₂ should also be a promising anisotropy compensation system, like Tb_{1-x}Dy_xFe₂ and Tb_{1-x}Ho_xFe₂. Unfortunately, the radius ratio of Nd:Fe is too large to fit the ideal atomic radius ratio for cubic Laves phase compound ($\sqrt{3/2}$ [12]), precluding the ambient pressure synthesis of $Tb_{1-x}Nd_xFe_{1,9}$ cubic Laves phase when the Nd concentration is higher than 60 at% in the rare earth sublattice [4]. Therefore, one of the key aspects in the research of Nd-containing magnetostrictive materials is how to synthesize single cubic Laves compounds with high-Nd content. Ren et al. [3] found that the introduction of B can improve the content of Nd in $Tb_{1-x}Nd_x(Fe_{0.9}B_{0.1})_2$. However, the single Laves phase was obtained only when $x \le 0.55$. Our group [7] recently reported the structure and magnetostrictive properties of Nd(Fe1- $_{x}Co_{x})_{1.9}$ compounds. It was found that the substitution of Co for Fe is beneficial for the synthesis of $Nd(Fe_{1-x}Co_x)_{1,9}$ cubic Laves compound. However, single cubic Laves phase can be obtained only when Co content up to 60 at% in the transition metal sublattice by a traditional annealing method under normal pressure. Meanwhile, both the Curie temperature and saturation magnetization of $Nd(Fe_{1-x}Co_x)_{1,9}$ increase with increasing Co concentration to a maximum at x = 0.2. Recently, Yin et al. [8] investigated the structure and magnetostrictive behavior of Tb_{1-x}Nd_x(Fe_{0.8}Co_{0.2})_{1.93} compounds prepared by annealing as-cast ingots under ambient pressure. It was found that non-cubic phase appears when x > 0.4. Shi et al. [4] have successfully synthesized high-Nd content cubic Laves Tb_{1-x}Nd_xFe_{1.9} anisotropy compensation compounds by arcmelting and subsequent high-pressure annealing. As a matter of fact, alternative methods of synthesis high-Nd content RFe₂ magnetostrictive materials without involving the high-pressure process are still highly desired. The rapid quenching by meltspinning was reported to be an effective way to synthesize

^{*} Corresponding author. E-mail addresses: shiyangguang@gmail.com, shiyg@nuaa.edu.cn (Y.G. Shi).

metastable phases [13–15]. As far as known, few investigations on synthesizing and stabilizing high-Nd content cubic Laves compounds by melt-spinning technique were reported.

In the present work, we have prepared high-Nd content $Tb_{0.2}Nd_{0.8}(Fe_{0.8}Co_{0.2})_{1.9}$ compound with single cubic Laves phase by melt-spinning and subsequent annealing. The structure, magnetic properties and magnetostriction of the compound were investigated. This work may provide an effective way to synthesize high-Nd content cubic Laves phase under ambient pressure.

2. Experiment

Starting ingots of Tb_{0.2}Nd_{0.8}(Fe_{0.8}Co_{0.2})_{1.9} stoichiometry were melted by an arc furnace with constituent metals under high purity Ar atmosphere. The purity of constituent metal is 99.9% for Tb and Nd and 99.99% for Fe and Co. Extra 5 wt.% of Tb and Nd were added to compensate the loss during the arc-melting and melt-spinning. For a better chemical homogeneity, the ingots were remelted four times. Subsequently, the ingots were induction melted and then spinning at different wheel surface speeds from 10 m/s to 40 m/s under Ar atmosphere. Conventional X-ray diffraction (XRD) analvsis was carried out using Cu K α radiation with a Rigaku D/MaxgA diffractometer at room temperature. The ribbons were then vacuum annealed at different temperature from 773 K to 973 K for 30 min and cooled with the furnace. The atomic force microscopy (AFM) was performed with a commercial scanning probe microscope (Digital Instruments, NanoScope V, Veeco). The magnetization of the compounds was measured using a vibrating sample magnetometer (VSM) at room temperature. The temperature dependence of magnetization was measured at a field of 2 kOe by VSM. In order to detect the easy magnetic direction of the sample, the ⁵⁷Fe Mössbauer spectra were recorded at room temperature, calibrated with a standard α -Fe foil and analyzed by Lorentzian lines in 256 channels using software MossWinn [16]. To measure the magnetostriction of the sample, annealed ribbons were crush into powders and mixed with 5% epoxy resin and pressed to 60 MPa to produce cylindrical disk with size $\phi 10mm \times 2mm$. The linear magnetostriction was measured using standard strain-gauge technique in directions parallel (λ_{\parallel}) or perpendicular (λ_{\perp}) to applied magnetic fields at room temperature.

3. Results and discussion

Fig. 1 shows the XRD patterns of Tb_{0.2}Nd_{0.8}(Fe_{0.8}Co_{0.2})_{1.9} as-cast ingots and annealed at different temperature for 7 days. It can be seen that each sample exhibits a multiphase structure. For the ascast ingot [Fig. 1](a), the main phase is (Tb,Nd) (Fe,Co)₃ with the PuNi₃-type structure, and the second phase is (Tb,Nd) (Fe,Co)₂ with MgCu₂-type structure, coexisting with a small amount of rare earth phases. The XRD patterns of the ingots annealed at 773 K [Fig. 1](b) and 973 K [Fig. 1](c) are similar with the as-cast one. Here, (Tb,Nd) (Fe,Co)₃ remains the dominate phase and (Tb,Nd) (Fe,Co)₂ is the second one. From these results, we can find that it is difficult to synthesize $Tb_{0,2}Nd_{0,8}(Fe_{0,8}Co_{0,2})_{1,9}$ with single cubic Laves phase by annealing its as-cast ingots under normal pressure, which should be ascribed to the large radius of Nd^{3+} [12]. Shi et al. investigated the structure of $Tb_{1-x}Nd_xFe_{1,9}$ compounds annealed under ambient pressure. However, no trace of cubic Laves phase with MgCu₂-type structure can be found in their samples when $x \ge 0.6$ [4]. Here, the emergence of cubic Laves phase should be attributed to the effects of substitution of Co for Fe, which is consistence with the previous reports [7,8].

Fig. 2 presents the room-temperature $Tb_{0.2}Nd_{0.8}(Fe_{0.8}Co_{0.2})_{1.9}$ XRD patterns of as-spun ribbons at a wheel speed of 40 m/s and annealed at 773 K and 973 K for 30 min, respectively. In contrast

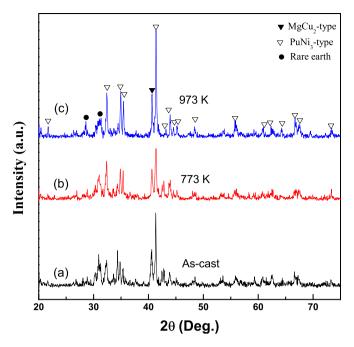


Fig. 1. The room-temperature XRD patterns of $Tb_{0.2}Nd_{0.8}(Fe_{0.8}Co_{0.2})_{1.9}$ compound: (a) as-cast ingots and annealed at (b) 773 K and (c) 973 K for 7 days.

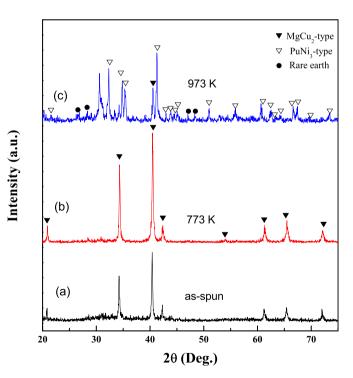


Fig. 2. The room-temperature XRD patterns of $Tb_{0.2}Nd_{0.8}(Fe_{0.8}Co_{0.2})_{1.9}$ ribbons: (a) asspun at wheel speed of 40 m/s and annealed at (b) 773 K and (c) 973 K for 30 min.

with Fig. 1, both the ribbons of as-spun and annealed at 773 K are free of PuNi₃-type structure and exhibit almost single cubic Lave phase with MgCu₂-type structure, which indicates that rapid quenching is beneficial for the formation of cubic Laves phase and can eliminate the (Tb,Nd) (Fe,Co)₃ phase effectively. This also means that high-Nd content single Laves compounds, which could not be readily synthesized by annealing its ingots, can be

Download English Version:

https://daneshyari.com/en/article/1607663

Download Persian Version:

https://daneshyari.com/article/1607663

Daneshyari.com