Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Enhanced photocatalytic activity of hierarchical flower-like CeO_2/TiO_2 heterostructures

materials letters

Zhenghua Fan^a, Fanming Meng^{a,b,*}, Jinfeng Gong^a, Huijie Li^a, Youdi Hu^a, Daorui Liu^a

^a School of Physics and Materials Science, Anhui University, Hefei 230601, PR China ^b Key laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, PR China

ARTICLE INFO

Article history: Received 29 January 2016 Received in revised form 18 March 2016 Accepted 28 March 2016 Available online 29 March 2016

Keywords: CeO₂/TiO₂ heterostructures Nanoparticles Crystal growth Photocatalytic activity Optical materials and properties

ABSTRACT

Preparation of flower-like CeO_2/TiO_2 heterostructures as photocatalysts was successfully obtained by a simple two-step solvothermal/hydrothermal method. The as-prepared sample consisted of the oriented aggregation of small CeO_2 nanoparticles supported on the self-assembled nanorods of hierarchical flower-like TiO_2 . Compared with pure CeO_2 , pure TiO_2 and commercial P25, the flower-like CeO_2/TiO_2 heterostructures exhibited markedly enhanced photocatalytic activity in the degradation of Rhodamine B (RhB) under UV light irradiation. The enhanced photocatalytic activity of flower-like CeO_2/TiO_2 heterostructures could be attributed to the improvement of charge separation derived from the coupling effect of TiO_2 and CeO_2 heterostructures.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The application of heterogeneous semiconductor photocatalysts in water treatment and environmental remediation has recently attracted extensive attention due to their effective utilization of solar energy, which is a natural abundant energy source [1]. Of all semiconductor photocatalysts employed in water treatment, anatase TiO_2 , with the band energy of 3.2 eV is found to exhibit a desirable photocatalytic activity under UV light irradiation. However, pure TiO₂ has a wide band gap and only exhibits photocatalytic activities in the UV range. Thus, designing coupled semiconductor heterojunction with matching band potentials and molecular architecture of semiconductors have been proved as the effective approaches to enhance photocatalytic activity. Nowadays, it shows that TiO_2 coupled with other materials, such as ZnO [2], $ZnSnO_3$ [3] and CeO_2 [4] and Cu_2O [5], can enhanced the photocatalytic activity via improving the charge separation or photogenerated charges and extending the photoresponse region. Among the composite with TiO₂ as the major component, CeO₂ has been shown to be a promising candidate owing to the following reasons. Firstly, CeO₂, due to its suitable band gap edge positions, has been successfully used in a variety of photocatalytic processes such as detoxification and hydrogen production [6,7]. Second, The redox couple of Ce^{3+}/Ce^{4+} and the high capacity to

E-mail address: mrmeng@ahu.edu.cn (F. Meng).

http://dx.doi.org/10.1016/j.matlet.2016.03.136 0167-577X/© 2016 Elsevier B.V. All rights reserved. store/release oxygen under oxidizing/reducing conditions of CeO_2 have gained additional importance in the application of heterogeneous catalysis [8]. As one type of promising architecture, hierarchical structures with a large surface area and abundant active sites have been investigated for a long time. For example, Huang et al. [9] reported that three-dimensional CeO_2/TiO_2 nanowire was prepared by combining hydrothermal method and anodic electrodeposition. Liu et al. [10] reported that hierarchical hollow CeO_2/TiO_2 nanocube was synthesized by a facile generic strategy. To our best knowledge, reports on the oriented aggregation of small CeO_2 nanoparticles assembled on the low-dimensional building blocks of hierarchical flower-like TiO₂ structures were quite few.

In this paper, we report a facile approach to prepare flower-like CeO_2/TiO_2 heterostructures. The CeO_2 nanoparticles oriented aggregation along the self-assembly nanorods of hierarchical TiO_2 structures can be clearly observed. The flower-like CeO_2/TiO_2 photocatalyst showed high activity on the degradation of RhB. Many other heteroarchitectures materials with different morphology could be prepared by using this kind of environmentally friendly, cost-effective synthesis route.

2. Experimental

The flower-like CeO_2/TiO_2 heterostructures were successfully obtained by a simple two-step solvothermal/hydrothermal method. The detailed synthesis procedures are available in the

^{*} Corresponding author at: School of Physics and Materials Science, Anhui University, Hefei 230601, PR China.

supporting information.

3. Results and discussion

Fig. 1a depicted the XRD pattern of pure TiO₂, pure CeO₂ and flower-like CeO₂/TiO₂ heterostructures. The synthesized samples displayed composite materials corresponding to tetragonal anatase TiO₂ (JCPDS no. 21-1272) and a face centered cubic (FCC) fluorite structure (ICPDS no. 43-1002). The weak diffraction peaks of CeO₂/TiO₂ heterostructure indicated that the crystallinities were reduced in comparison with single phase TiO₂. This result may be attributed to lattice distortion induced by interfacial strain because of the different lattice parameters between CeO₂ and TiO₂ [11]. The defects may affect photocatalysis by effective capture of the photoexcited electrons, and thus inhibit the recombination of photoexcited electrons and holes. Fig. 1b showed the Raman spectra of the samples. The results showed the characteristic signals for the tetragonal phase of TiO₂ (anatase) around 142–143 cm⁻¹, $196-198 \text{ cm}^{-1}$, $395-396 \text{ cm}^{-1}$, $514-515 \text{ cm}^{-1}$, and $638-639 \text{ cm}^{-1}$ [12]. The band at 463 cm⁻¹ corresponds to the cubic phase of CeO₂ fluorite type phase [13].

Fig. 2a and b showed the SEM images of pure TiO₂ and flowerlike CeO₂/TiO₂ heterostructures, respectively. It was obvious that the CeO₂/TiO₂ heterostructures maintain the morphology of prepared TiO₂ except for a little shrinkage in size. The surface of the synthesized powder consisted of nano-size small particles. But the nanoparticles were clustered together, making it difficult to determine the size of individual nanoparticle. The flower-like CeO₂/TiO₂ heterostructures appeared hierarchial nanostructures self-assembled by nanorods, as shown in Fig. 2b. The nanorods were about 50 nm in width and 150 nm in length (Fig. 2c). The CeO₂ nanoparticles oriented aggregation along the self-assembly nanorods of TiO₂ can be clearly observed in Fig. 2c. The flower-like CeO₂/TiO₂ heterostructures was also characterized by HRTEM, as illustrated in Fig. 2d. As shown in Fig. 2d, the detected lattice spacing of 0.357 nm and 0.304 nm agreed with TiO₂ (101) and CeO₂ (111) plane spacing, respectively. The result was in total agreement with the observed XRD analysis.

The UV–vis spectra of pure CeO₂, pure TiO₂ and flower-like CeO₂/TiO₂ were shown in Fig. 3a. The band gap (E_g) of the synthesized photocatalyst was calculated by the following equation: $E_g = 1240/\lambda_{max}$, where λ is the wavelength maximum. It was observed that pure TiO₂, pure CeO₂ and flower-like CeO₂/TiO₂ showed a band gap edge at the wavelength of about 412 nm, 453 nm and 473 nm, respectively. Hence, the band gap of the pure TiO₂, pure CeO₂ and flower-like CeO₂/TiO₂ was calculated to be 3.01 eV, 2.74 eV, and 2.62 eV. Fig. 3b showed the degradation curves of RhB on the commercial P25, pure CeO₂, pure TiO₂, the

interfacial charge transfer efficiency. All the factors contributed greatly to the improved UV light catalytic activity. The stability of photocatalyst is important for practical application. As shown in Fig. 3c, there was no obvious change in the photocatalytic activity after three cycles of photodegradation, implying the good stability of CeO₂/TiO₂ heterostructures.

heterojunction effect can lead to enhanced charge separation and

Based on the above measurements and analyses, a possible mechanism for charge transfer and photocatalysis process can be proposed. The band edge positions of the conduction band and valence band of a semiconductor can be determined using the equation: $E_{CB} = X - E_e - 0.5E_g$, where X is the absolute electronegativity of the semiconductor (X is 5.81 eV and 5.56 eV for TiO₂ and CeO₂, respectively) [14, 15]. E_e is the energy of free electrons on the hydrogen scale (4.5 eV) and E_g is the band gap of the semiconductor. According to Fig. 3a, the band gap energies of CeO₂ and TiO₂ observed in this study were 2.74 eV and 3.01 eV, respectively, and the corresponding E_{CB} values were estimated to be -0.31 eV and -0.2 eV. As illustrated in Fig. 4, both TiO₂ and CeO₂ can be activated under UV light, which result in the form of photogenerated holes in the valence gap (VB) and electrons in their conduction band (CB). The activated electrons at CB gap of CeO₂ were transferred to the CB of TiO₂ through the interface, because the E_{CB} of TiO₂ (-0.2 eV) was more positive than that of CeO_2 (-0.31 eV). Similarly, VB holes (TiO₂) could inject to the VB of CeO₂ by the control of the interface. It is more beneficial to accelerate the separation of photoinduced electron-hole pairs in TiO₂ and CeO₂, resulting in the improvement of photocatalysis under UV irradiation.

4. Conclusions

In summary, flower-like CeO_2/TiO_2 heterostructures were synthesized by a simple two-step solvothermal/hydrothermal method. The flower-like CeO_2/TiO_2 heterostructures exhibited excellent photocatalytic activity under UV light irradiation, which was ascribed to the improvement of the separation for the photogenerated electron-hole pairs.

Fig. 1. XRD pattern (a) and Raman spectroscopy (b) of pure TiO₂, pure CeO₂ and flower-like CeO₂/TiO₂ heterostructures.

Download English Version:

https://daneshyari.com/en/article/1641244

Download Persian Version:

https://daneshyari.com/article/1641244

Daneshyari.com