Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Flexible titanium carbide–carbon nanofibers with high modulus and high conductivity by electrospinning

Gangyong Zhou^a, Tianrou Xiong^a, Shaohua Jiang^{a,b,*}, Shaoju Jian^a, Zhengping Zhou^a, Haoqing Hou^{a,**}

^a College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330027, PR China ^b Macromolecular Chemistry II, University of Bayreuth, 95440, Germany

ARTICLE INFO

Article history: Received 27 September 2015 Received in revised form 22 November 2015 Accepted 24 November 2015 Available online 28 November 2015

Keywords: Titanium carbide-carbon nanofibers Electrospinning Flexibility Young's modulus Conductivity

ABSTRACT

Titanium carbides are well-known for their outstanding mechanical and thermal stabilities. However, the studies on the mechanical properties and the conductivity of titanium carbide–carbon nanofibers (TiC/CNF) are missing. This work prepared TiC/CNF by electrospinning and highlighted the high modulus of single TiC/CNF, the flexibility and the excellent electrical conductivity of TiC/CNF felt even under 100 bending cycles. This flexible TiC/CNF felt with distinguished mechanical and electrical properties are promising to apply in titanium matrix composites (TMC), efficient catalyst scaffolds and electronic devices.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As one of the refractory transition metal carbides, titanium carbide (TiC) has been extensively investigated due to its high Young's modulus (300–480 GPa), low mass density (4.91 g/cm³), superior hardness (28–35 GPa), thermal stabilities and chemical resistance [1–5]. In particular, hybrid TiC nanofibers produced by electrospinning have drawn more and more attentions because of their advantages like free-standing, low electrical resistance, binder-free, excellent electrochemical stability, etc., in supercapacitor application [6,7]. However, to the best of our knowledge, there are no reports regarding the mechanical properties and the conductivity of continuous titanium carbide–carbon nanofibers (TiC/CNF).

In this work, we fabricated continuous TiC/CNF nanofibers by electrospinning and carbothermal reduction, and studied the mechanical properties and electrical conductivity of TiC/CNF under bending conditions. It was found that the TiC/CNF possessed excellent mechanical properties, high electrical conductivity and conductivity retention after many bending cycles.

** Corresponding author.

E-mail addresses: s.jiang19830913@gmail.com (S. Jiang), hhq2001911@126.com (H. Hou).

http://dx.doi.org/10.1016/j.matlet.2015.11.119 0167-577X/© 2015 Elsevier B.V. All rights reserved.

2. Experimental

Polyacrylonitrile (PAN, M_w =86000), *N*,*N*-dimethylformamide (DMF, 99.9%), titanium tetrachloride (TiCl₄), polyvinylpyrrolidone (PVP, M_w =1,300,000) and Ni(NO₃)₂·6H₂O were obtained from Sigma Aldrich.

TiCl₄ (0.81 g), Ni(NO₃)₂ · 6H₂O (0.07 g) and PVP (0.40 g) were dissolved in DMF (5.8 g) under Argon atmosphere and magnetically stirred for 30 min at room temperature. Then, PAN/DMF (7.0 g, 15 wt%) was added to the PVP/TiCl₄ solution with continuous stirring. The as-prepared PAN/PVP/TiCl₄ solution was electrospun into nanofibers by applying electrical potential, collecting distance, flow rate and humidity of 27 kV, 20 cm, 0.9 ml/h and 34%, respectively. The nanofiber felt was collected by a rotating drum (diameter: 0.3 m; rotation speed: 30 rpm) for 10 h. The as-spun PAN/PVP/TiCl₄ felt was pre-oxidized at 220 °C (air, 1 °C/min, 3 h) and carbonized at 1000 °C (vacuum, 15 °C/min, 0.5 h). To remove the impurities, the obtained TiC/CNF felt was soaked in 6 mol/L hydrochloric acid for 30 min, washed with distilled water and absolute ethanol and dried at 80 °C for 6 h. As comparison, carbon nanofiber (CNF) felt from PAN/PVP solution was also prepared with the same treatments as TiC/CNF.

The surface morphology and microstructure of TiC/CNFs were examined by field-emission scanning electron microscope (SEM, FEI Quanta 200, USA) equipped with an energy dispersive X-ray spectroscopy (EDS) detector, transmission electron microscopy (TEM, JEM-3010, Japan), X-ray diffraction (XRD, Bruker D8

^{*} Corresponding author at: Macromolecular Chemistry II, University of Bayreth, 95440, Germany.

Fig. 1. SEM images of as-spun (A), pre-oxidized (B) and carbonized PAN/PVP/Ticl₄ nanofibers (C); EDS spectrum of TiC/CNF (D); TEM images of TiC/CNF (E and F). Insets in (E) and (F) are high magnification image and the nanocrystal structure of an individual TiC nanoparticle.

Fig. 2. TGA curves of TiC/CNF felt in air and N₂ atmosphere (A), XRD patterns of TiC/CNF felt and TiC powder (B), and XPS spectra of Ti-2p (C) and C-1s (D).

Advance diffractometer) and X-Ray photoelectron spectroscopy (XPS, Thermo ESCaLAB 250, USA). The electrical conductivity of TiC/CNF felt was measured by a four-point probes resistivity measurement system (RST-8 model, Guangzhou four-point probe technology Co., LTD, China). The mechanical property of TiC/CNF felt was measured by a universal testing machine (SANS, Shenzhen, China) at a tensile speed of 5 mm/min. The oxidation behavior and thermal stability of TiC/CNF felt were examined by the

Download English Version:

https://daneshyari.com/en/article/1641599

Download Persian Version:

https://daneshyari.com/article/1641599

Daneshyari.com