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a b s t r a c t

We review the concept of quantum vortices and their appearance in ionization collisions. By relaxing the
usual geometrical restrictions on the momenta of the final-state, we study these vortices as submanifolds
of codimension 2 in the space where the transition matrix element T is defined. In particular, we
exemplify their main characteristics by studying the ionization of hydrogen by positron impact.
Previous calculation under a collinear geometry for impact energies larger than 270 eV have shown
the presence of three isolated vortices. Here we demonstrate that they are produced by a single vortex
line intersecting three times the corresponding two-dimensional collinear plane.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

We have a basic knowledge about vortices steaming from our
everyday experience. We see vortices while stirring a cup of coffee.
They evidence in smoke rings, the whirlpool in the wake of a boat,
or a dust devil crossing the road in front of our car. They can even
have planetary dimensions, as in the red spot of Jupiter. Besides
these macroscopic examples, vortices can also appear in Quantum
Physics. Their existence was predicted by Lars Onsager [1] in
connection with superfluid helium and by Alexei Abrikosov [2] in
type-II superconductors. Quantum vortices were also observed
experimentally in Bose–Einstein condensates [3].

In this article we discuss a completely different kind of quan-
tum vortices that can be observed in atomic collisions. They are
not the result of the interaction of a lot of particles as in a super-
fluid; they are not related to any magnetic field, as in a supercon-
ductor; and they do not require any external non-linear term to be
added to the dynamical equation, as in a Bose–Einstein condensate.
They appear in the Schrödinger equation for a few-body system
with Coulomb interactions. Nothing else is required.

But, how can we talk about vortices in such a simple quantum
system? In these previous cases we actually had a fluid flowing,
or a current. But, what is flowing in a few-body system? These very
valid questions will be addressed in Sections 4 and 5. But first, let
us review some basic concepts about vortices.

2. Vorticity and circulation

At a very basic level, a vortex is a region in a fluid where the
flow rotates about an axis. Its study requires the introduction of
some quantities that would help to define this rotation locally.
One of this key quantities is the vorticity, defined as the curl of
the velocity field uðr; tÞ of the fluid, namely

~xðr; tÞ ¼ r � u: ð1Þ
Using Stokes’ theorem it can be easily demonstrated that ~xðr; tÞ is
proportional to the rate of rotation of a small fluid element about its
own axes [7]. Since, by its own definition as a curl, r � ~x ¼ 0, only
two out of its three components are independent.

Another quantity of interest is the circulation C [8] which for
any closed contour C around an arbitrary curved surface S in the
fluid reads

C ¼
I
C
u � dl ¼

Z
S

~x � ds; ð2Þ

where the circuit C is oriented counterclockwise with respect to the
surface normal s. Let us consider, for instance, a fluid rotating as a
rigid body with angular speed X around an axis ẑ. In cylindrical
coordinates ðq; #; zÞ, its velocity field is u ¼ Xq #̂, and the vorticity
reads ~x ¼ 2X ẑ, i.e. it is constant and equal to twice the angular
velocity. Thus, the circulation about a surface S reads C ¼ 2SX.

We are not interested in this kind of rigid body rotating fluid
though, but in one that would contain ‘‘irrotational vortices”. This
is apparently a contradictio in terminis since, how can a vortex exist
in a fluid that is not rotating? To address this question, let us con-
sider a velocity field that is inversely proportional to the distance q
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from its axis, namely u / #̂=q. Then, the vorticity is zero every-
where (and so, the flow is said to be irrotational), except at the axis
itself, where it diverges. But because this singularity is integrable,
the circulation is zero for any contour not encircling the axis, and
constant for a contour around the axis, independently of its size
and shape. We’ll come back to this example in a following section.

3. Irrotational vortices

We might have a quotidian understanding about vortices, but
not a rigorous definition, or even a broadly accepted one. Many
proposals have been made in the past [4–7], but none seems to
be entirely satisfactory [7]. Fortunately, here we are not dealing
with general vortices, but with irrotational ones, and so a precise
definition is possible. We can define an irrotational vortex as any
region of an irrotational fluid where the vorticity is different from
zero (or more specifically, diverges).

As it was first proven by von Helmholtz in 1858 [9] and further
developed by Lord Kelvin [10], the circulation around any point of
a vortex is constant. This constancy means that vortices cannot ter-
minate within a fluid, and therefore they must form loops or reach
the fluid’s boundary.

Since the seminal articles by Helmholtz and Kelvin, much work
have been devoted to the study of the kinematics and dynamics of
vortices, but the simple characterization provided here will be
enough for the purpose of the present analysis. Thus, without
any further delay, let us address the question stated in the intro-
duction, on how a vortex can be defined in a simple quantum
system.

4. Madelung’s hydrodynamical interpretation

Some few months after the publication of the famous article by
Schrödinger on wave mechanics [11], Erwin Madelung [12,13]
noticed that if the wave function for a particle of mass m under
the action of a potential Vðr; tÞ is written in terms of amplitude
and phase

Wðr; tÞ ¼ Aðr; tÞ exp i
�h
Sðr; tÞ

� �
; ð3Þ

and replaced in Schrödinger equation

� �h2

2m
r2Wþ VðrÞ � i�h

@W
@t

¼ 0; ð4Þ

separating it in its real and imaginary parts, we get, after some sim-
ple maths, two coupled real equations

@q
@t

þr � ðguÞ ¼ 0; ð5Þ
@uj

@t
þ ðu � rÞuj ¼ � 1

m
rjV � 1

mg
X
i

riPij: ð6Þ

Here we have defined the following quantities,

gðr; tÞ ¼ jAj2; ð7Þ
uðr; tÞ ¼ rS=m; ð8Þ
and

Pijðr; tÞ ¼ � �h2

4m

 !
q
@2 lng
@xi@xj

: ð9Þ

Even though there has been some controversy regarding the equiv-
alence between Schrödinger and Madelung equations [14,15], it is
clear that a solution of Schrödinger equation is also a solution of
the two coupled Eqs. (5) and (6). Thus, these equations represent
a different way of addressing the same problem than Eq. (4). When

we see the problem under this light, we notice that Eq. (5) is clearly
a continuity equation, where the square of the amplitude is a den-
sity, and the gradient of the phase divided by the mass is a velocity.
On the other hand, Eq. (6) is the very well known Euler equation for
the movement of a fluid of non-interacting particles of mass m
under a potential VðrÞ, except that now it is affected by a pressure
tensor Pij of quantum origin. So, here we have all the elementary
entities for describing a vortex in a simple quantum system. Basi-
cally, a fluid and a velocity field.

5. Quantum vortices

Since the velocity field of a quantum system, as defined in Eq.
(8), is the gradient of a scalar function, namely the action S, then
the corresponding vorticity, defined as the curl of this velocity, is
equal to zero. In other words, the velocity field of a quantum sys-
tem is irrotational. Therefore, the only vortices that can appear in a
quantum system are irrotational.

Going back to the example of an irrotational vortex, as
described at the end of Section 2, it is easy to demonstrate that it
can be achieved by a quantum systemwhose action S is linear with
the angle # around a certain axis. In cylindrical coordinates ðq; #; zÞ
we write S ¼ �hm#. Note that, since the wave function is single val-
ued, the quantitym has to be a whole number. This action produces
a velocity field that diverges on the line q ¼ 0, namely
u ¼ �hm #̂=mq. The circulation is zero everywhere, except if the cir-
cuit encircles the line q ¼ 0, where it reads C ¼ 2p�hm=m. The vor-
ticity diverges at q ¼ 0 and is zero everywhere else. Therefore, the
line q ¼ 0 corresponds to an irrotational vortex. Thus, we see that a
simple quantum system with ‘‘magnetic quantum number” m pro-
vides a trivial example of an irrotational vortex.

The vortex in this simple example is located upon a straight
line. But in general, quantum vortices can have complex shapes.
Furthermore, in Section 8 we will demonstrate that vortices can
even have different dimensions, depending on the configuration
space of the problem at hand. Finally, as we will explain in the fol-
lowing section, a vortex can evolve in time, stretching and twisting,
and even collapse onto itself or with another vortex of opposite
circulation.

Thus we can generalize the result obtained for the simple exam-
ple described previously, and write for a set of canonical coordi-
nates and a circuit C encircling the vortex

C ¼
I
C
p � dq ¼ 2p�hm; ð10Þ

where m 2 Z represents a ‘‘magnetic quantum number” associated
to the angular momentum carried by the vortex. Let us note that
the main controversy regarding the equivalence between the
Schrödinger and Madelung equations is related to this quantization
condition [14,15].

Finally it is very important to stress that the action S is unde-
fined at a quantum vortex. And this is possible only if the wave
function is zero on this same locus. This can also be demonstrated
by means of the continuity Eq. (5), by taking into account that the
velocity diverges at the vortex. Thus quantum vortices are nodes of
the wave function.

6. Vortices in ionization collisions

By numerically solving the Schrödinger equation, Macek and
co-workers [16] exemplified the appearance and evolution of
quantum vortices in the ionization of hydrogen atoms by the
impact of protons of 5 keV. In particular, their example shows
some different scenarios for the creation and destruction of quan-
tum vortices [8]. For instance, they showed how a vortex line
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